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Fractal as attractor

Let (X , d) be a complete metric space. Moreover, let H(X ) denote
the space of non-empty, compact subsets of X .

Definition
Let (X , d) be a complete metric space, x ∈ X and B ∈ H(X ). We
extend the metric d to X ×H(X ) in the following way

d(x ,B) = min{d(x , y) : y ∈ B}.

We say that d(x ,B) is the distance of a point x to the set B.



Definition
Let (X , d) be a complete metric space and let A,B ∈ H(X ). We
extend the metric d to H(X )×H(X ) in the following way

d(A,B) = max{d(x ,B) : x ∈ A}.

We say that d(A,B) is the distance from A to B.

Let us note that such an extension of d is not a metric in H(X )
yet. It does not fulfil the symmetry condition.



Let us consider a metric space (R2, de) and any two non-empty,
compact sets A,B ∈ H(R2) such that A ⊊ B, e.g.,

A

B

Because A ⊊ B, so for all x ∈ A we have
d(x ,B) = min{de(x , y) : y ∈ B} = 0. Thus, d(A,B) = 0.
On the other hand, there exist y ∈ B such that for all x ∈ A we
have de(y , x) > 0. From this, we get that d(y ,A) > 0, and in
consequence d(B,A) > 0. Therefore, d(A,B) ̸= d(B,A).



Definition
Let (X , d) be a complete metric space. Let us define a function
hX : H(X )×H(X ) → [0,+∞) in the following way

∀A,B∈H(X ) hX (A,B) = max{d(A,B), d(B,A)}.

The function hX is called the Hausdorff metric.



Theorem
Let (X , d) be a complete metric space. Then, the space (H(X ), h)
is a complete metric space.

Lemma
Let (X , d) be a metric space and let w : X → X be a contraction
mapping with the contractivity factor s. Then, the extension
w : H(X ) → H(X ) defined by

∀B∈H(X ) w(B) = {w(x) : x ∈ B}

is a contraction mapping on (H(X ), h) with contractivity factor s.



Lemma
Let (X , d) be a metric space and let {wn : n = 1, 2, . . . ,N} be
contraction mappings on (H(X ), h). Denote by sn the contractivity
factor of wn for n = 1, 2, . . . ,N. Let us define W : H(X ) → H(X )
in the following way

∀B∈H(X ) W (B) = w1(B) ∪ w2(B) ∪ . . . ∪ wN(B) =
N⋃

n=1

wn(B).

Then, W is a contraction mapping with contractivity factor
s = max{sn : n = 1, 2, . . . ,N}.

The mapping W from the lemma is called the Hutchinson operator.



Definition
An Iterated Function System (IFS) consists of a complete metric
space (X , d) and a finite set of contraction mappings wn : X → X
with contractivity factors sn for n = 1, . . . ,N. We will denote it in
the form {X ;wn, n = 1, . . . ,N}, and its contractivity factor as
s = max{sn : n = 1, . . . ,N}.



Theorem
Let {X ;wn, n = 1, . . . ,N} be an IFS with contractivity factor s. Then,
the mapping W : H(X ) → H(X ) defined by

W (B) =
N⋃

n=1

wn(B)

for all B ∈ H(X ) is a contraction mapping on a complete metric space
(H(X ), h) with contractivity factor s, i.e.,

h(W (B),W (C )) ≤ s · h(B,C )

for all B,C ∈ H(X ).
Moreover, mapping W has a unique fixed point A ∈ H(X ), i.e.,
A = W (A), and it is given by the formula A = limk→∞ Bk , where
Bk = W k(B) for any B ∈ H(X ).

The notation W k in the theorem means the k-times composition of W .



Definition
The fixed point A ∈ H(X ) in the theorem from the previous slide
is called an attractor of the IFS or the fractal.



So far, the considerations had a general character, so in practical
applications of fractals we need to take a specific metric space and
a concrete class of contraction mappings.

Generally, in practice we use the (Rn, de) space, and for the
contraction mappings we use the affine mappings w : Rn → Rn of
the form:

w(x) = Ax + t,

where x ∈ Rn, A ∈ Rn
n, t ∈ Rn.

Of course, not all affine mappings are contractive, so we need
some condition that will guarantee the contractivity.



Let us take and x , y ∈ Rn. Then

∥w(x)− w(y)∥ = ∥Ax − Ay∥ = ∥A(x − y)∥.

Because mapping of the form Ax is linear and continuous, so

∥w(x)− w(y)∥ ≤ ∥A∥∥x − y∥.

Thus, it is sufficient that ∥A∥ < 1 for w to be a contraction
mapping. If we take the following matrix norm

∥A∥ =
√

λmax(ATA),

where λmax(A
TA) is the largest eigenvalue of ATA, then the

condition takes the following form:√
λmax(ATA) < 1.



Let us recall what the eigenvalue of a matrix is.

Definition
A scalar λ ∈ R is called eigenvalue of a matrix A ∈ Rn

n if there
exists a non-zero vector v ∈ Rn such that

Av = λv .

Vector v is called the eigenvector that corresponds to the
eigenvalue λ.
The set of all eigenvalues of A is called the spectrum.



Generation of an attractor given by IFS

In the literature we can find various algorithms for the generation
of an attractor of a given IFS, e.g.,

▶ deterministic method,

▶ random method,

▶ minimal plotting method,

▶ escape time method,

▶ image based method,

▶ etc.

A survey of the various methods can be found in the book:
Nikiel, S.: Iterated Function Systems for Real-time Image
Synthesis. Springer, London, (2007)



Deterministic method

The deterministic method results directly from the definition of the
attractor.

Let us assume that we have an IFS {X ;wn, n = 1, . . . ,N}. We
select any starting set B ∈ H(X ). Next, we perform iterations
Bk = W k(B) for k = 0, 1, . . ..

Bk Bk+1Bk+1 = W(Bk)



The more iterations we perform the better approximation of the
attractor we get.

The key role in the convergence of the iteration process plays the
contractivity factor of the IFS. The closer to 1 the slower the
convergence, and in consequence we need to perform more
iterations to get a good approximation of the attractor.

In order to generate an image of the attractor using the
deterministic method, we perform several iterations obtaining some
(good) approximation of the attractor. After some iteration (other
for different IFSs), if we perform further iterations, we will not see
any further details of the attractor. This is due to the fact that we
use a discrete image with a finite resolution.



Despite its simplicity, the deterministic method is not used in
practice very often because the speed of generation is slower than
the speed of other methods.

This is a consequence of the fact that with each iteration the
number of subsets grows N times, so for instance, in the k − 1
iteration we have Nk−1 subsets which are the input for the kth
iteration in which after transforming the Nk−1 subsets we get Nk

subsets.

We see that with each iteration the memory requirements for
storing the subsets and the number of computations grown
exponentially.



Random method

To introduce the random method (also called the chaos game), we
need to define an additional notion.

Definition
An Iterated Function System with probablities consists of an IFS
{X ;wn, n = 1, 2, . . . ,N} together with a set of probabilities
{p1, p2, . . . , pN} such that p1 + . . .+ pN = 1 and pn > 0 for
n = 1, 2, . . . ,N. The probability pn is assigned to the mapping wn

for n = 1, 2, . . . ,N. We will denote the IFS with probabilities in
the following way {X ;w1,w2, . . . ,wN ; p1, p2, . . . , pN}.



In the chaos game, we have an IFS with probabilities
{X ;w1,w2, . . . ,wN ; p1, p2, . . . , pN} and an arbitrary starting point
x0 ∈ X .

⋮
xk

xk+1 = w1(xk)

xk+1 = w2(xk)

xk+1 = wN(xk)

xk+1

Random choice



In practice, we are not able to perform infinitely many iterations,
so additionally in the algorithm we give the maximal number of
iteration that we should perform.

In his book, S.Nikiel approximated the number of iterations needed
to obtain a good attractor approximation by 8 · H · V , where H is
the horizontal resolution, and V is the vertical resolution of an
image that we generate.



The starting point x0 can be arbitrarily chosen point.

When the point does not belong to the attractor, then several first
points generated by the random process also do not belong to the
attractor. After these several iterations, all the other points belong
to the attractor. In such a situation, we omit several first iterations
in the drawing process.

When the starting point belongs to the attractor, then all the
points generated by the random process also belong to the
attractor, so we can draw all the generated points.

The choice of the starting point, so it belongs to the attractor, can
be performed, for example, by choosing a fixed point of one of the
mappings that form the IFS (the existence of such fixed point
results from the Banach fixed point theorem).



In the chaos game, we assume that we have an IFS with
probabilities. But what to do in a situation in which we do not
have such IFS?

When the contraction mappings wk (in Rn) are affine, then we can
calculate the probabilities in such a way that we get an uniform
convergence to the attractor.

Let Ak be the mapping matrix of the mapping wk for
k = 1, 2, . . . ,N.

We can take the same probability for each of the mappings, but in
some cases such choice will not give uniform convergence.



A better choice is to take probabilities calculated with the formula:

pk =
| detAk |∑N
i=1 | detAi |

k = 1, . . . ,N.

If for some k ∈ {1, . . . ,N} the determinant detAk = 0, then as pk
we take some small positive number, e.g., 0.001, and from the
other probabilities, we subtract numbers such that the condition
p1 + . . .+ pN = 1 is fulfilled.

When all the determinants are equal to zero, then we select the
probabilities empirically or we take the same probabilities for all the
mappings.



Examples of attractors

Sierpinski triangle (or gasket) was discovered in 1915. It can be
generated by the following IFS {R2;w1,w2,w3}, where

w1(

[
x
y

]
) =

[
0.5 0
0 0.5

] [
x
y

]
+

[
0
0

]
,

w2(

[
x
y

]
) =

[
0.5 0
0 0.5

] [
x
y

]
+

[
0.5
0

]
,

w3(

[
x
y

]
) =

[
0.5 0
0 0.5

] [
x
y

]
+

[
0.25
0.5

]
.



Iterations (from left): 1, 4, 8. The starting set: triangle.



Barnsley’s fern is given by the following IFS {R2;w1,w2,w3,w4}:

w1(

[
x
y

]
) =

[
0.849 0.037
−0.037 0.849

] [
x
y

]
+

[
0.075
0.183

]
,

w2(

[
x
y

]
) =

[
0.197 −0.226
0.226 0.197

] [
x
y

]
+

[
0.4

0.049

]
,

w3(

[
x
y

]
) =

[
−0.15 0.283
0.26 0.237

] [
x
y

]
+

[
0.575
−0.084

]
,

w4(

[
x
y

]
) =

[
0 0
0 0.16

] [
x
y

]
+

[
0.5
0

]
.

The probabilities were calculated using the method presented in
the previous slides.



The number of iterations (from left): 1 000, 10 000, 100 000.



The IFS
{R3;wijk , (i , j , k) ∈ {0, 1, 2}3\{(i , j , k) ∈ {0, 1, 2}3 : (i = j =
1, k = 0, 1, 2) ∨ (j = k = 1, i = 0, 1, 2) ∨ (i = k = 1, j = 0, 1, 2)}}
for the Menger sponge is given by the following formula:

wijk(

xy
z

) =
1

3 0 0
0 1

3 0
0 0 1

3

xy
z

+

 i
3
j
3
k
3

 .

The IFS consists of 20 mappings.



Iterations (from left): 1, 2, 3. The starting set: cube.



Inverse fractal problem

So far, we dealt with the problem of how to generate an attractor
of a given IFS. Now, we will deal with the inverse problem, i.e.,
having a given set A ∈ H(X ) we want to find an IFS for which A is
the attractor.

The problem is called the inverse fractal problem. In contrast to
the generation of an attractor for which we know many simple and
efficient algorithms, the problem of finding an IFS for a given set is
a very hard problem.

One of the approaches to this problem was presented by
M. Barnsley in his collage theorem.



Theorem (collage theorem)

Let (X , d) be a complete metric space. Let L ∈ H(X ) and ε > 0
be given. Choose an IFS {X ;w1, . . . ,wN} with contractivity factor
0 ≤ s < 1 such that

h(L,
N⋃

n=1

wn(L)) ≤ ε.

Then
h(L,A) ≤ ε

1− s
,

where A is the attractor of the IFS.

Definition
The constant ε from the collage theorem is called the collage error.



The method that results from the collage theorem is the following.

We take the set L ∈ H(X ) and we cover it with copies of itself
obtained by transforming this set by contraction mappings. The
coverage is chosen in such a way that the Hausdorff distance
between L and the coverage is less or equal to ε.

The IFS obtained in this way has an attractor A that, according to
the collage theorem, is distant from L by at most ε

1−s .



In practice, when we use the collage theorem, we require that the
number of the contraction mappings that form the IFS is minimal,
and that the smaller copies overlap in a minimal way. We make
such requirements because in this way we obtain a small number of
information needed to generate the attractor.



The following theorem is an important tool among others in
computer graphics, and it is closely related to the collage theorem.
It determines a continuous dependency between the attractor and
the parameters of the mappings that form the IFS.

Theorem
Let (X , d) be a complete metric space. Let {X ;w1, . . . ,wN} be an
IFS with contractivity factor s. For n = 1, . . . ,N let wn depend
continuously on the parameter p ∈ P, where (P, dp) is a compact
metric space. Then the attractor A(p) ∈ H(X ) depends
continuously on the parameter p ∈ P with respect to the Hausdorff
metric.



The theorem from the previous slide can be interpreted in the
following way: small changes in the parameters of the mappings
that form the IFS lead to small changes in the attractor.

It is a very important feature because:

▶ we can control, in a continuous way, the attractor by changing
the parameters of the mappings that form the IFS,

▶ it guarantees us that we can go from one attractor to another
in a continuous way, so we can make the so-called fractal
morphing.



Let us take the following IFS {R2;w1,w2,w3,w4} which generates
the Barnsley’s fern, in which the w1 mapping has one parameter
p ∈ R, where

w1(

[
x
y

]
) =

[
0.849 0.037 + p
−0.037 0.849

] [
x
y

]
+

[
0.075
0.183

]
,

w2(

[
x
y

]
) =

[
0.197 −0.226
0.226 0.197

] [
x
y

]
+

[
0.4
0.049

]
,

w3(

[
x
y

]
) =

[
−0.15 0.283
0.26 0.237

] [
x
y

]
+

[
0.575
−0.084

]
,

w4(

[
x
y

]
) =

[
0 0
0 0.16

] [
x
y

]
+

[
0.5
0

]
.



Ferns for various values of the p parameter (from left): 0, −0.037,
−0.067.

We see a continuous dependency between the attractor and the
parameter p of mapping w1.



In the end, let us notice one important thing. A given attractor
can be generated using various IFSs.

w1

w2

w3

v1

v2

v3

u1

u2

u3

u4


