
Fractal methods in computer graphics

Assignments set 3

In all the assignments, we need to use colour maps. Examples of colour maps can be found
in the colormaps.zip archive. In the archive, each colour map is in two formats: (1) an image
that can be used as a 1D texture, (2) a text file in which, in the successive lines, we have the R,
G, B values of the colours that form the map.

1. Implement the algorithm for generating the Mandelbrot set (Algorithm 1).

Algorithm 1: Mandelbrot set
Input: K ∈ N – the maximal number of iterations; A ⊂ C – area.
Output: Approximation of the Mandelbrot set in A.

1 for c ∈ A do
2 R = max{|c|, 2}
3 z = c
4 ic = 0
5 for i = 1 to K do
6 z = z2 + c
7 if |z| > R then
8 ic = i
9 break

10 Colour the point c with the ic colour

Example of the Mandelbrot set for K = 50, A = [−2, 1] × [−1.5, 1.5] and the neon.map
colour map:

2. Implement Julia set generation algorithm in which the colouring is done with the help
of the binary decomposition (Algorithm 2).

Examples of Julia sets for c = 0.35, A = [−1.5, 1.5]2, K = 50 and various values of the
escape threshold R, from left 2, 5, 10:

1

Algorithm 2: Julia set.
Input: c ∈ C – the parameter; A ⊂ C – area; K ∈ N – the maximal number of

iterations; R ∈ R+ – the escape threshold.
Output: Approximation of the Julia set in A.

1 for z0 ∈ A do
2 ic = 0
3 for i = 1 to K do
4 zi = z2

i−1 + c
5 if |zi| > R then
6 ic = i
7 break

8 Colour the point z0 using the binary decomposition for zi

3. Implement polynomiographs generation algorithm with iterations (Algorithm 3). In the
program, we should have the possibility of selecting: the root-finding method (at least
two methods, both other than Newton’s method), the polynomial, iteration type (at least
two iterations, both other than Picard’s iteration), and the convergence test (at least two
different tests).

Examples of root-finding methods, that can be used in the program, can be found, for
instance, in

• Section 5 „Newton Fraktale” http://www.3d-meier.de/tut20/Seite1.html

• Gościniak, I., Gdawiec, K.: PSO-based Newton-like Method and Iteration Processes
in the Generation of Artistic Patterns. Lecture Notes in Computer Science, vol.
11241, pp. 47-56, (2018) PDF version

• Gdawiec, K., Kotarski, W., Lisowska, A.: On the Robust Newton’s Method with the
Mann Iteration and the Artistic Patterns from Its Dynamics. Nonlinear Dynamics
104(1), 297-331, (2021) PDF version

A review of 17 different iterations can be found here:

2

http://www.3d-meier.de/tut20/Seite1.html
http://kgdawiec.bplaced.net/badania/pdf/isvc_2018.pdf
http://kgdawiec.bplaced.net/badania/pdf/non_dyn_2021.pdf

• Gdawiec, K., Kotarski, W.: Polynomiography for the Polynomial Infinity Norm via
Kalantari’s Formula and Nonstandard Iterations. Applied Mathematics and Com-
putation 307, 17-30, (2017) PDF version

Algorithm 3: Polynomiograph rendering.
Input: p ∈ C[Z], deg p ≥ 2 – polynomial; A ⊂ C – area; M – the number of iterations;

Iv : C → C – the iteration with the parameters v; Cu : C × C → {true, f alse} –
convergence test; colours[0..k] – colour map.

Output: Polynomiograph in A.

1 for z0 ∈ A do
2 [n, z] = iteratePoint(z0, p, Iv, Cu, M)
3 Colour z0 using n, z and the colour map colours

Algorithm 4: iteratePoint

Input: z0 ∈ C – the point; p ∈ C[Z], deg p ≥ 2 – polynomial; Iv : C → C – the iteration
with the parameters v; Cu : C × C → {true, f alse} – convergence test; M – the
number of iterations.

Output: The number of iteration and the last computed point.

1 iteratePoint(z0, p, Iv, Cu, M)
2 n = 0
3 while n < M do
4 zn+1 = Iv(zn)
5 if Cu(zn, zn+1) = true then
6 break

7 n = n + 1

8 return [n, zn+1]

Example 1: polynomiographs for Halley’s method, p(z) = z3 − 1, A = [−2, 2]2, M =
30, ε = 0.001, the colour map from 0408_093-s.map and the Picard–S iteration with the
parameters:

• α = 0.5 + 1.5i, β = 0.8 and the convergence test

||zn+1|2 − |zn|2| < ε,

• α = 0.1, β = 0.9 and the convergence test

|0.01(zn+1 − zn)|+ |0.029|zn+1|2 − 0.03|zn|2| < ε.

3

http://kgdawiec.bplaced.net/badania/pdf/amc_2017.pdf

Example 2: polynomiographs for Halley’s method, p(z) = z4 + 1, A = [−2, 2]2, M =
30, ε = 0.001, the colour map from 0408_093-s.map and the Ishikawa iteration with the
parameters:

• α = 0.9, β = 0.1 and the convergence test

||zn+1|2 − |zn|2| < ε,

• α = 0.6 − 0.75i, β = 0.8 and the convergence test

|0.01(zn+1 − zn)|+ |0.029|zn+1|2 − 0.03|zn|2| < ε.

4. Implement the multi-step polynomiography (Algorithm 5).

Multi-step polynomiograph:

4

Algorithm 5: Multi-step polynomiograph rendering.
Input: A ⊂ C – area; {p1, p2, . . . , pN} – polynomials; {Iv1 , Iv2 , . . . , IvN} – iterations;

{M1, M2, . . . , MN} – the numbers of iterations for the successive steps;
{Cu1 , Cu2 , . . . , CuN} – convergence tests for the successive steps; { f1, f2, . . . , fN} –
area transformations for the successive steps; colours[0..k] – colour map.

Output: Multi-step polynomiograph in A.

1 for z0 ∈ A do
2 m = 0
3 z = z0
4 for i = 1, 2, . . . , N do
5 [n, u] = iteratePoint(z, pi, Ivi , Cui , Mi)
6 m = m + n
7 z = fi(u − z)

8 Determine the colour for z0 using m and the colour map colours

was generated in [−3, 3]2 using the jutemap.map colour map, ε = 0.001 and the following
parameters:

• the first step: Halley’s method, p1(z) = z3 − 1, M1 = 20, Noor iteration with α =
0.8 − 0.4i, β = 0.2, γ = 0.9 − 0.5i, f1(z) = z/(0.75 + 2.5i) and the convergence test:

|zn+1 − zn| < ε,

• the second step: Newton’s method, p2(z) = z4 + 1, M2 = 20, Ishikawa iteration
with α = 0.7, β = 0.7, f2(z) = z/(0.75 + 2.5i) and the convergence test:

|0.04ℜ(zn+1 − zn)| < ε ∨ |0.05ℑ(zn+1 − zn)| < ε,

where ℜ(z), ℑ(z) are the real and imaginary parts of the complex number z, respec-
tively.

5

