
Fractal methods in computer graphics

Assignments set 2

1. Implement the deterministic algorithm of generating circle inversion fractal (Algorithm 1).

Algorithm 1: Deterministic inversion algorithm.
Input: C1, . . . , Ck – inversion circles, S1, . . . , Sm – starting circles, each intersects some of

the Ci and is orthogonal to all the Ci they intersect, n – the number of iterations.
Output: F – circle inversion fractal

1 F = {S1, . . . , Sm}
2 T1 = ∅
3 for i = 1, . . . , k do
4 for j = 1, . . . , m do
5 if Sj does not intersect Ci then
6 C = ICi(Sj)

7 T1 = T1 ∪ C

8 F = F ∪ T1
9 for l = 1, . . . , n do

10 T2 = ∅
11 for i = 1, . . . , k do
12 for j = 1, . . . , |T1| do
13 S = j-th circle from T1
14 if Ci is not orthogonal to S and i ̸= q, where q is the number of the inversion circle

used in the previous iteration to obtain S then
15 C = ICi(S)
16 T2 = T2 ∪ C

17 F = F ∪ T2
18 T1 = T2

19 Plot F

In order to realize the deterministic method we will need two test: test for intersection
of two circles, test checking whether two circles are orthogonal. Let us assume that
c1, c2 ∈ R2 are the centres of two circles, and r1 and r2 are their radii, respectively.

In the first test, we compare the distance between the centres of the circles and their radii
(school mathematics).

In the case of the second test, the circles are orthogonal if the following condition is
satisfied:

r2
1 + r2

2 = d2,

where d is the Euclidean distance between c1 and c2.

An example of the first three iterations in the generation of a circle inversion fractal
(blue – inversion circles, green – the starting circles, red – the circles forming the circle

1

inversion fractal):

The parameters of the inversion circles from the example: c1 = (200, 200), r1 = 200, c2 =
(600, 200), r2 = 200, c3 = (200, 600), r3 = 200, c4 = (600, 600), r4 = 200, c5 = (400, 400),
r5 = 82.85.

The parameters of the starting circles from the example: c1 = (400, 400), r1 = 200, c2 =
(400, 282.85), r2 = 82.85, c3 = (400, 517.15), r3 = 82.85, c4 = (282.85, 400), r4 = 82.85,
c5 = (517.15, 400), r5 = 82.85.

2. Implement the generation algorithm of the star-shaped set inversion fractal (Algorithm 2).
In the program we should be able to generate fractal which is given by circles and star-
shaped polygons. As the iteration one should use the Mann iteration.

In the implementation we will need to find the intersection point of a ray with the
boundary of the star-shaped set. Let us assume that the ray is given by the formula
r(t) = o + t(p − o), where t ∈ [0, ∞), o – inversion centre, p – the point defining the ray.

In the case of a circle with the centre c and radius r after including the formula for the
ray into the circle equation we get:

∥p − o∥2t2 + 2[(p − o) · (o − c)]t + ∥o − c∥2 − r2 = 0,

where · is the dot product. This is a quadratic equation with the variable t. By solving
this equation we get: no solution (there is no intersection), one solution (the ray is tangent
to the circle), or two solutions (because we consider a ray, so the solution which we are
looking for is the positive solution). After finding the solution t∗, we put its value into
the ray’s equation r(t∗) obtaining the searched intersection point.

2

Algorithm 2: Extended random inversion algorithm with colouring
Input: S1, . . . , Sk – star-shaped sets with chosen centres of inversion, c1, . . . , ck – colours

of the transformations, p0 – starting point external to S1, . . . , Sk, n > 20 –
number of iterations, Pv – iteration with parameters v, W, H – image
dimensions, γ ∈ R+

Output: Image I with an approximation of a star-shaped set inversion fractal

1 for (x, y) ∈ {0, 1, . . . , W − 1} × {0, 1, . . . , H − 1} do
2 I(x, y) = black
3 H(x, y) = 0

4 c = a random colour
5 j = a random number from {1, . . . , k}
6 p = Pv(ISj , p0)

7 for i = 2 to n do
8 l = a random number from {1, . . . , k}
9 while j = l or inSet(Sl, p) do

10 l = a random number from {1, . . . , k}
11 j = l
12 p = Pv(ISj , p)
13 if i > 20 then
14 x = ⌊xp⌋
15 y = ⌊yp⌋
16 H(x, y) = H(x, y) + 1

17 c =
c+cj

2
18 I(x, y) = c

19 mH = max(x,y) H(x, y)
20 for (x, y) ∈ {0, 1, . . . , W − 1} × {0, 1, . . . , H − 1} do
21 if H(x, y) > 0 then

22 I(x, y) =
(

log2(1+H(x,y))
log2(1+mH)

)1/γ
I(x, y)

3

In the case of star-shaped polygon, we check intersection of the ray with every edge
of the polygon. Because the polygon is star-shaped, so there is only one such point.
Therefore, when we find the intersection point we do not need to test the next edges of
the polygon. Because the point p defining the ray lies outside the star-shaped set, so to
check the intersection of a ray with an edge we can use Algorithm 3.

Algorithm 3: Ray–edge intersection test.
Input: p0, p1 – edge’s endpoints; o – ray’s origin; p – the point defining the direction of

the ray.
Output: The intersection point or null if there is no intersection.

1 dr = p − o
2 ds = p1 − p0
3 q = p0 − o

4 d = drydsx − drxdsy
5 if |d| < 0.0001 then
6 return null

7 t = 1
d (dsxay − dsyax)

8 s = 1
d (drxay − dryax)

9 if t ≥ 0 ∧ s ∈ [0, 1] then
10 return o + tdr

11 return null

To a full implementation of Algorithm 2 we need also a test that checks whether a given
point p is inside the star-shaped set. In the case of the circle, we can use school mathemat-
ics, i.e., check a condition that results from circle’s equation. For a star-shaped polygon,
the situation is more complex. We can use algorithm that is presented in Algorithm 4.

Exemplary star-shaped sets defining some star-shaped set inversion fractals are in the
inv_fractals.zip archive. The format of data included in the files is the following. In the
first line we have a single number k which is the number of the star-shaped sets. In the
next k lines we have definitions of the sets. Each line starts with a single letter: C – circle,
P – polygon. In the case of the circle the next two numbers are the inversion’s centre
coordinates, and the next three numbers are the centre’s coordinates and the radius. In
the case of the polygon, the first two numbers are the inversion’s centre coordinates.
Then, we have the number of vertices, and next each pair of numbers are the vertex
coordinates.

Example of a star-shaped set inversion fractal (various_03.sif) for various values of the α

parameter in the Mann iteration. The first image presents the star-shaped sets, and the
next ones present fractals for α: 1.0, 0.9, 0.8, 0.7, 0.6.

4

Algorithm 4: Point inside a star-shaped polygon test.
Input: v0, v1, . . . , vn – polygon’s vertices; orient – vertices orientation (true –

counterclockwise orientation, f alse – clockwise orientation); p – the point that
we test.

Output: true – the point is inside the polygon; f lase – the point is outside of the
polygon.

1 inside = f alse
2 j = n
3 for i = 0, 1, . . . , n do
4 i0 = (orient) ? j : i
5 i1 = (orient) ? i : j
6 if (vi0y ≤ py ∧ py < vi1y) ∨ (vi1y ≤ py ∧ py < vi0y) then
7 x = vi0x + (py − vi0y)(vi1x − vi0x)/(vi1y − vi0y)

8 if x > px then
9 inside = !inside

10 j = i

11 return inside

5

