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Abstract
This manuscript investigates the convergence behavior of Suzuki’s generalized non-
expansive mappings using the recently introduced Picard–Abbas iteration process.
We establish both weak and strong convergence results for the associated fixed-point
approximations. To demonstrate the effectiveness of our approach, a numerical example
is provided. Furthermore, we generate polynomiographs based on the proposed iteration
process and compare them with those produced by existing methods, highlighting the
advantages and visual insights offered by our scheme.

1 Introduction
Fixed point theory is a versatile and powerful mathematical tool that plays a crucial role in
various scientific and engineering disciplines. It is particularly effective for addressing com-
plex nonlinear problems, where conventional analytical methods often prove inefficient or
infeasible. The theory has broad applications, including population dynamics in biology [1],
market equilibrium models in economics [2], stable strategy profiles in game theory [3],
chemical equilibrium analysis in chemistry [4], stability analysis in engineering [4], and algo-
rithm development in artificial intelligence [5]. By leveraging fixed point results, researchers
can obtain optimal solutions while minimizing computational costs.

Given the complexity of these applications, standard analytical techniques are often either
computationally expensive or incapable of providing exact solutions. Fixed point theory offers
a powerful alternative by proving the existence of solutions and furnishing constructive meth-
ods to approximate them. A fundamental result in this field is Banach’s Contraction Principle
(BCP) [6], which asserts that any contraction operator on a closed subset of a Banach space
has a unique fixed point. Moreover, this fixed point can be effectively approximated using the
Picard iteration method. This result forms a cornerstone for establishing the existence and
approximation of solutions in a wide range of applied problems.

To formally define a contraction mapping, let G be a nonempty subset of a Banach space
𝕍. A self-mapping Y ∶ G → G is said to be a contraction mapping if there exists a constant
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𝜁 ∈ [0, 1) such that for all p, x∈ G, the following inequality holds:

∥Yp –Yx∥≤ 𝜁∥p – x∥. (1)

When 𝜁 = 1, the mapping is said to be nonexpansive. Furthermore, a point k∈ G is called
a fixed point of Y if Y(k) = k. Throughout this paper, Fix(Y) will denote the set of all fixed
points of Y . The mapping Y is said to be quasi-nonexpansive if:

∥Yp – k∥≤ ∥p – k∥ (2)

for all p∈ G, and k∈ Fix(Y).
Over time, various generalizations of contraction mappings have been proposed. One such

extension is the class of nonexpansive mappings, introduced independently by Browder [7],
Gohde [8], and Kirk [9]. To establish fixed point results for nonexpansive mappings, certain
structural conditions such as closedness, boundedness, and uniform convexity are typically
required [10]. Suzuki made a significant advancement in this direction [11], who proposed
a generalization termed condition (C), characterizing a class of mappings now referred to as
Suzuki’s generalized nonexpansive mappings. A mapping Y ∶ G → G is said to satisfy condition
(C) if, for all p, x∈ G, the following holds:

1
2
∥x –Yx∥≤ ∥x – p∥⇒ ∥Yx –Yp∥≤ ∥x – p∥. (3)

Suzuki demonstrated that this class of mappings forms a broader category than
quasi-nonexpansive mappings but is not as general as the class of nonexpansive mappings.
Specifically, while every nonexpansive mapping satisfies condition (C), the converse does not
necessarily hold. The following example illustrates this distinction.

Example 1.1 ([11]). Define a mapping Y ∶ [0, 3]→ [0, 3] by

Y(p) =
⎧⎪⎪⎨⎪⎪⎩

1, if p = 3,
0, otherwise.

(4)

In this example, Y satisfies condition (C) but is not a nonexpansive mapping.

Determining the fixed points of various classes of nonlinear mappings is a mathemat-
ically challenging task. This challenge is compounded by the failure of Picard iteration to
converge for nonexpansive mappings in a complete metric space and by the inapplicabil-
ity of the Banach Contraction Principle to such mappings. Consequently, numerous itera-
tive procedures have been developed to approximate fixed points of these mappings. These
methods have been extensively studied in the literature, notably in the works of Mann [12],
Ishikawa [13], Noor [14], Abbas and Nazir [15], Sahu et al. [16], Thakur et al. [17], and Eke
and Akewe [18], among others.

Let {𝜌n}, {𝜓n}, and {𝜂n} be sequences in (0,1), where n∈ℕ. The iteration scheme
introduced by Noor [14] is recognized as the first three-step iteration process. This iteration
process generates the sequence {un} as follows:
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u0 ∈ G,
un+1 = (1 – 𝜌n)un + 𝜌nYyn,
yn = (1 – 𝜓n)un + 𝜓nYwn,
wn = (1 – 𝜂n)un + 𝜂nYun.

(5)

Abbas and Nazir proposed a faster iteration process than the Noor iteration, known as the
Abbas iteration process [15], which generates the sequence {un} as follows:

u0 ∈ G,
un+1 = (1 – 𝜌n)Yyn + 𝜌nYwn,
yn = (1 – 𝜓n)Yun + 𝜓nYwn,
wn = (1 – 𝜂n)un + 𝜂nYun.

(6)

Thakur et al. [17] introduced the following iteration process for approximating the fixed
point of nonexpansive mappings:

u0 ∈ G,
un+1 = (1 – 𝜌n)Yun + 𝜌nYyn,
yn = (1 – 𝜓n)wn + 𝜓nYwn,
wn = (1 – 𝜂n)un + 𝜂nYun.

(7)

Sahu et al. [16] proposed a new three-step iteration process to approximate fixed points of
nonexpansive mappings, generating the sequence {un} as follows:

u0 ∈ G,
un+1 = (1 – 𝜌n)Ywn + 𝜌nYyn,
yn = (1 – 𝜓n)wn + 𝜓nYwn,
wn = (1 – 𝜂n)un + 𝜂nYun.

(8)

Eke and Akewe proposed a four-step iteration process, called the Picard–Noor iteration,
which generates the sequence {un} as follows [18]:

u0 ∈ G,
un+1 =Yzn,
zn = (1 – 𝜌n)un + 𝜌nYyn,
yn = (1 – 𝜓n)un + 𝜓nYwn,
wn = (1 – 𝜂n)un + 𝜂nYun.

(9)

A recent contribution by Manbhalang and Naveen [19] introduced the Picard–Abbas
iteration process and established both weak and strong convergence results for contraction
mappings. The Picard–Abbas iteration process is defined as follows:
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u0 ∈ G,
un+1 =Yzn,
zn = (1 – 𝜌n)Yyn + 𝜌nYwn,
yn = (1 – 𝜓n)Yun + 𝜓nYwn,
wn = (1 – 𝜂n)un + 𝜂nYun.

(10)

In recent years, Suzuki’s generalized nonexpansive mappings have attracted considerable
attention across various mathematical disciplines, leading to significant progress in fixed-
point theory (see [20–23]). These mappings are particularly valuable for the development and
analysis of iterative methods due to their rich structural properties and nuanced convergence
behavior.

In this work, we investigate the convergence properties of Suzuki’s generalized nonexpan-
sive mappings using the Picard–Abbas iteration process. Our study not only extends exist-
ing results but also offers a comparative perspective by analyzing the performance of sev-
eral established iteration schemes, including those by Noor, Abbas, Thakur, Sahu, and the
Picard–Noor iteration processes. To complement our theoretical findings, we present a
new numerical example and employ polynomiography—a modern digital visualization
technique—to depict the convergence behavior of the various iteration processes. This visual
approach enhances the interpretability of the results and facilitates a deeper understanding of
their dynamics.

The structure of this paper is as follows. Sect 2 introduces key definitions and fundamen-
tal lemmas. In Sect 3, we establish fixed-point results for the proposed iteration process. In
Sect 4, we provide a numerical example to demonstrate the effectiveness of the scheme. Sect 5
illustrates the iteration process using visualizations generated through polynomiography.
Sect 6 concludes the paper with final remarks.

2 Preliminaries
The following basic results are key to proving our main result.

Definition 2.1 ([10]). A Banach space 𝕍 is said to be a uniformly convex Banach space
(UCBS) if, for all 𝛿 ∈ (0, 2], there exists 𝜍 > 0 such that

∥q1∥≤ 1,
∥q2∥≤ 1,
∥q1 – q2∥ > 𝛿,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⇒ ∥q1 + q2
2
∥≤ 𝜍, for all q1, q2 ∈𝕍. (11)

Definition 2.2. Let G be a convex and closed subset of a Banach space 𝕍, and let {un} be
a bounded sequence in 𝕍. For any u∈ G, the asymptotic radius of the sequence {un} with
respect to G is defined by

r(G,{un}) = inf{lim sup
n→∞

∥un – u∥ ∶ u∈ G} ,

and the asymptotic center of {un} with respect to G as

A(G,{un}) = {u∈ G ∶ lim sup
n→∞

∥un – u∥ = r(G,{un})} .
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Definition 2.3 ([24]). A Banach space 𝕍 is said to have Opial’s property if, for every sequence
{un} in 𝕍 that converges weakly to some k∈𝕍 (i.e., un ⇀ k), the following inequality holds:

lim inf
n→∞

∥un – k∥ < lim inf
n→∞

∥un – t∥

for all t∈𝕍 with t≠ k.

Proposition 2.4 ([11]). Let G ≠∅ be a subset of a Banach space 𝕍 and let Y ∶ G→ G be a
mapping:

(a) If Y is nonexpansive, then Y satisfies condition (C).
(b) Any mapping that satisfies condition (C) and has a fixed point is quasi-nonexpansive.
(c) If Y fulfills condition (C), then

∥p –Yx∥≤ 3∥p –Yp∥ + ∥p – x∥, ∀ p, x∈ G.

Lemma 2.5 ([11]). Let G ≠∅ be a subset of a Banach space 𝕍 equipped with Opial’s prop-
erty. Let Y ∶ G→ G be a mapping satisfying condition (C). If {un} converges weakly to k and
∥Yun – un∥ = 0, then Yk = k.

The concept of condition (I), originally introduced by Senter and Dotson [25], serves as an
alternative approach for demonstrating the strong convergence of certain iterative processes
in non-compact domains.

Definition 2.6. Let G ≠∅ be a subset of a Banach space 𝕍 and let Y be a self-mapping defined
on G. The mapping Y is said to satisfy condition (I) if there exists a non-decreasing function
g ∶ [0,∞)→ [0,∞) with g(0) = 0 and g(u) > 0 for all u > 0, such that

∥p –Yp∥≥ g(d(p,Fix(Y))) for all p∈ G,

where d(p,Fix(Y)) = inf{∥p – q∥ ∶ q∈ Fix(Y)}.

Lemma 2.7 ([11]). Let G be a weakly compact convex subset of a UCBS 𝕍, and let Y be a
self-map on G. Assume that Y satisfies condition (C), then Y has a fixed point.

Lemma 2.8 ([26]). Suppose 𝕍 is a UCBS and for all n≥ 1, we have 0 < a≤ 𝜆n ≤ b < 1. Sup-
pose {un} and {vn} are two sequences in 𝕍 satisfying lim sup

n→∞
∥un∥≤ 𝛿, lim sup

n→∞
∥vn∥≤ 𝛿 and

lim
n→∞
∥(1 – 𝜆n)un + 𝜆nvn∥ = 𝛿 holds for some 𝛿 ≥ 0. Then, lim

n→∞
∥un – vn∥ = 0.

3 Main Results
This section presents convergence results for mappings that satisfy condition (C), utilizing the
Picard–Abbas iteration process.

Lemma 3.1. Let G ≠∅ be a closed and convex subset of a UCBS 𝕍. Suppose that Y ∶
G→ G is a mapping satisfying condition (C) with Fix(Y) ≠∅. Let {un} be the sequence
generated by the Picard–Abbas iteration process (10). Then, for any k∈ Fix(Y), the sequence
{un} satisfies

lim
n→∞
∥un – k∥ = 0.
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Proof : Let k∈ Fix(Y) and u∈ G. Since Y satisfies condition (C), by Proposition 2.4(b), we
have that Y is quasi non-expansive mapping, i.e.,

∥Yu – k||≤ ||u – k∥, ∀ u∈ G, k∈ Fix(Y).

Using (10), we get

||wn – k|| = ∥(1 – 𝜂n)un + 𝜂nYun – k∥
≤ (1 – 𝜂n)||un – k|| + 𝜂n||Yun – k||
≤ (1 – 𝜂n)||un – k|| + 𝜂n||un – k||
= ||un – k||.

(12)

And,

||yn – k|| = ||(1 – 𝜓n)Yun + 𝜓nYwn – k||
= ||(1 – 𝜓n)(Yun – k) + 𝜓n(Ywn – k)||
≤ (1 – 𝜓n)||Yun – k|| + 𝜓n||Ywn – k||
≤ (1 – 𝜓n)||un – k|| + 𝜓n||wn – k||.

Using (12), we have

||yn – k||≤ (1 – 𝜓n)||un – k|| + 𝜓n||un – k|| = ||un – k||. (13)

Also

||zn – k|| = ||(1 – 𝜌n)Yyn + 𝜌nYwn – k||
= ||(1 – 𝜌n)(Yyn – k) + 𝜌n(Ywn – k)||
≤ (1 – 𝜌n)||Yyn – k|| + 𝜌n||Ywn – k||
≤ (1 – 𝜌n)||yn – k|| + 𝜌n||wn – k||.

Using (12) and (13), we obtain

||zn – k|| ≤ ||un – k||. (14)

Similarly,

||un+1 – k|| = ||Yzn – k||≤ ||zn – k||.

By using (14), we get

||un+1 – k|| ≤ ||un – k||. (15)

It follows from (12)–(15) that

∥un+1 – k∥≤ ∥un – k∥.

Hence, the sequence {∥un – k∥} is both bounded and non-increasing. Thus, we can con-
clude that lim

n→∞
||un – k|| exists for each k∈ Fix(Y). ◻

Next, we discuss the existence of a fixed point for mappings satisfying condition (C).
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Theorem 3.2. Let 𝕍 be a UCBS, and let G ⊆𝕍 be a nonempty, closed and convex subset.
Suppose that Y ∶ G → G is a mapping satisfying condition (C), and let {un} be the sequence gen-
erated by the Picard–Abbas iteration process (10). Then, Fix(Y) is nonempty if and only if the
sequence {un} is bounded and lim

n→∞
||un –Yun|| = 0.

Proof : Suppose that Fix(Y) ≠∅ and let k∈ Fix(Y). By Lemma 3.1, we conclude that the
sequence un is bounded and that the limit lim

n→∞
||un – k|| exists and it is finite. Define

𝜉 = lim
n→∞

||un – k||. (16)

From Lemma 3.1, we get

||wn – k||≤ ||un – k||.

Thus,

lim sup
n→∞

||wn – k||≤ lim sup
n→∞

||un – k|| = 𝜉. (17)

As Y satisfies condition (C), and by Preposition 2.4(b), we get

||Yun – k||≤ ||un – k||.

Thus,

lim sup
n→∞

||Yun – k||≤ lim sup
n→∞

||un – k|| = 𝜉. (18)

By Lemma 3.1, we get

||un+1 – k||≤ ||wn – k||. (19)

Using (19) and (17), we have

𝜉 ≤ lim inf
n→∞

||wn – k||. (20)

From (17) and (20), we obtain that

𝜉 = lim
n→∞

||wn – k||. (21)

From Lemma 3.1, one has

||wn – k|| = ∥𝜂n(Yun – k) + (1 – 𝜂n)(un – k)∥,

so

lim
n→∞

||wn – k|| = lim
n→∞
∥𝜂n(Yun – k) + (1 – 𝜂n)(un – k)∥. (22)

Using (21) and (22), we get

𝜉 = lim
n→∞

||wn – k|| = lim
n→∞
∥𝜂n(Yun – k) + (1 – 𝜂n)(un – k)∥. (23)

Using Lemma 2.8 with (16), (18) and (23), we have

lim
n→∞

||Yun – un|| = 0.
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Conversely, suppose that {un} is bounded and lim
n→∞

||Yun – un|| = 0. Let k∈A(G,{un}), by
Proposition 2.4(c), we obtain

r(Yk,{un}) = lim sup
n→∞

||un –Yk||

≤ 3 lim sup
n→∞

||Yun – un|| + lim sup
n→∞

||un – k||

= lim sup
n→∞

||un – k|| = r(k,{un}) = r(A,{un}),

which implies that Yk∈A(G,{un}). As G is UCBS, therefore A(G,{un}) is a singleton, which
means Yk = k. Hence, Fix(Y) ≠∅. ◻

Next, we prove weak convergence using Opial’s property.

Theorem 3.3. Let ∅ ≠ G be a closed and convex subset of a UCBS 𝕍. Let Y ∶ G → G be a map-
ping satisfying condition (C) with Fix(Y) ≠∅. Suppose that the space 𝕍 satisfies Opial’s con-
dition. If {un} is the sequence generated by the Picard–Abbas iteration process (10), then {un}
converges weakly to a fixed point of Y .

Proof : By Theorem 3.2, the sequence {un} is bounded and satisfies lim
n→∞
∥un –Yun∥ = 0.

Since 𝕍 is a uniformly convex Banach space, it is reflexive. Thus, there exists a subse-
quence {unm} of {un} that converges weakly to some x1 ∈𝕍. By Lemma 2.5, it follows that
x1 ∈ Fix(Y).

To show that {un} converges weakly to x1, assume, for the sake of contradiction, that it
does not. Then there exists another subsequence {uns} of {un} such that {uns} converges
weakly to x2 ∈𝕍 with x2 ≠ x1. Again, by Lemma 2.5, we have x2 ∈ Fix(Y).

Now, by applying Opial’s condition together with Lemma 3.1, we obtain

lim
n→∞

||un – x1|| = lim
m→∞

||unm – x1|| < lim
m→∞

||unm – x2||

= lim
n→∞

||un – x2|| = lims→∞
||uns – x2||

< lim
s→∞

||uns – x1|| = lim
n→∞

||un – x1||.

This contradicts our supposition, so x1 = x2. Thus, {un} converges weakly to a point in
Fix(Y). ◻

Now, we use the concept of compactness to prove strong convergence.

Theorem 3.4. Let Y be a mapping satisfying condition (C) defined on a nonempty, closed,
and compact subset G of a uniformly convex Banach space 𝕍. Let {un} be a sequence generated
by (10). Then, {un} converges strongly to a fixed point of Y .

Proof : By using Lemma 2.7, we obtain Fix(Y) ≠∅. Since Fix(Y) ≠∅, it follows from
Lemma 3.2 that lim

n→∞
||Yun –un|| = 0 . As G is given to be compact and closed, there exists

a subsequence {unm} of {un} in G such that it converges strongly to some k∈ G, i.e.,
lim

nm→∞
||unm – k|| = 0. Hence, using these facts together with Proposition 2.4(c), we obtain

∥unm –Yk∥≤ 3∥Yunm – unm∥ + ∥unm – k∥. (24)

Letting nm →∞, we obtain unm →Yk. This implies Yk = k which means that k∈ Fix(Y).
Moreover, Lemma 3.1 implies that the limit lim

n→∞
||un – k|| exists. Hence, k is the strong limit of

the sequence {un}. ◻
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The following theorem proves strong convergence without requiring compactness.

Theorem 3.5. Let 𝕍 be a UCBS, and let G be a nonempty, closed, and convex subset of V .
Suppose that Y ∶ G → G is a mapping satisfying condition (C) , and let {un} be a sequence gen-
erated by (10). Then, {un} converges to a point in Fix(Y) if and only if

lim inf
n→∞

d(un,Fix(Y)) = 0.

Proof : Suppose that the sequence {un} converges to some k∈ Fix(Y). Then, by the defini-
tion of convergence,

lim
n→∞
∥un – k∥ = 0,

it follows that

lim inf
n→∞

d(un,Fix(Y)) = 0.

Conversely, assume that lim inf
n→∞

d(un,Fix(Y)) = 0. From Lemma 3.1, the limit lim
n→∞
∥un – k∥

exists, which gives

∥un+1 – k∥≤ ∥un – k∥

and this provides

d(un+1,Fix(Y))≤ d(un,Fix(Y)). (25)

Therefore {d(un,Fix(Y))} constitutes a decreasing sequence that is bounded below by
zero, so it may be obtained that lim

n→∞
{d(un,Fix(Y))} exists. Since lim inf

n→∞
d(un,Fix(Y)) = 0, so

d(un,Fix(Y)) = 0. We now show that {un} is a Cauchy sequence in G.
Since d(un,Fix(Y)) = 0, for any 𝜖 > 0, there exists an integerm0 ∈ℕ such that for all

n≥m0,

d(un,Fix(Y)) <
𝜖
2
.

Especially,

inf{∥un – k∥ ∶ k∈ Fix(Y)} < 𝜖
2
.

Thus, we can choose some s∈ Fix(Y) such that

∥un0 – s∥ <
𝜖
2
. (26)

For any n,m≥ n0, applying the triangle inequality, we obtain

∥un+m – un∥≤ ∥un+m – s∥ + ∥un – s∥.

Since both terms on the right-hand side are bounded by ∥un0 – s∥, it follows that

∥un+m – un∥≤ 2∥un0 – s∥,

which implies that {un} is a Cauchy sequence in G.
Since G is a closed subset of the Banach space 𝕍, then {un} is convereges in G. Consider

lim
n→∞

un = p for any p∈ G. Applying lim
n→∞
∥un – p∥ = 0, one obtains
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∥p –Yp∥≤ ∥p – un∥ + ∥un –Yun∥ + ∥Yun –Yp∥
≤ ∥p – un∥ + ∥un –Yun∥ + ∥un – p∥.
→ 0 as n→∞

Thus, p =Yp, hence p∈ Fix(Y). ◻

We now use condition (I) to prove the strong convergence of the Picard-Abbas iteration
process. This condition imposes additional constraints that strengthen convergence, espe-
cially when generalized non-expansiveness alone is not enough. It ensures norm convergence
by linking the iterative sequence to a fixed point and guaranteeing that the distance between
successive iterates gradually decreases.

Theorem 3.6. Let G be a closed and convex subset of UCBS 𝕍. Suppose that Y ∶ G→ G is
a mapping satisfying condition (I), and let {un} be a sequence generated by (10). Then, the
sequence {un} converges strongly to a fixed point of Y .

Proof : From (25), one can get lim
n→∞

d(un,Fix(Y)) exist and byTheorem 3.2, we obtain

lim
n→∞

||un –Yun|| = 0. (27)

From condition (I) and (27), we have

lim
n→∞

g(d(un,Fix(Y)))≤ lim
n→∞

||un –Yun|| = 0.

Therefore, lim
n→∞

g(d(un,Fix(Y))) = 0. Since g is a nondecreasing function with g(0) = 0,
g(u) > 0 for each u > 0, therefore we have

lim
n→∞

d(un,Fix(Y)) = 0.

Hence, all conditions of Theorem 3.5 are satisfied, therefore, {un} converges strongly to a
fixed point of Y . ◻

4 Numerical example
This section introduces a novel numerical example to demonstrate the convergence properties
of mappings satisfying condition (C), as analyzed through the Picard–Abbas iteration process.

Example 4.1. Define Y ∶ [0, 1]→ [0, 1] such that

Yp =
⎧⎪⎪⎨⎪⎪⎩

1 – p, if p∈ [0, 17),
p+4
5 , if p∈ [ 17 , 1].

(28)

First, we show that the given mapping is not a nonexpansive mapping. For p = 7
55 and x = 1

7 ,
we obtain

Yp = 48
55

,

Yx = 29
35

,

|p – x| = ∣ 7
55

–
1
7
∣ = 6

385
.
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Now,

|Yp –Yx| = ∣48
55

–
29
35
∣ = 17

385
.

We can notice that

|Yp –Yx| = 17
385
> 6
385
= |p – x|.

Therefore, the mapping given in (28) is not a nonexpansive mapping.
Now, we prove that Y given in (28) satisfies condition (C).

1. When p∈ [0, 17), then Yp = 1 – p, and

1
2
|p –Yp| = 1

2
|p – (1 – p)| = 1

2
(|1 – 2p|).

For |p–Yp|
2 ≤ |p – x|, we must have 1–2p

2 ≤ x – p. Thus,

1 – 2p
2
+ p≤ x⇒ x∈ [1

2
, 1] .

So, p∈ [0, 17) and x∈ [ 12 , 1] implies that

Yp = 1 – p, Yx = x + 4
5

.

Now,

|Yp –Yx| = ∣1 – p – x + 4
5
∣ = ∣5p + x – 1

5
∣≤ |p – x|.

Thus,

1
2
|p –Yp|≤ |p – x|⇒ |Yp –Yx|≤ |p – x|,

which implies that Y satisfies condition (C).
2. When p∈ [ 17 , 1] then Yp =

p+4
5 , and

1
2
|p –Yp| = 1

2
∣p – p + 4

5
∣ = 4 – 4p

10
∈ [0, 12

35
] .

For |p–Yp|
2 ≤ |p – x|, we must have 4–4p

10 ≤ |p – x|. Now, we have two cases:
(i) x > p. In this case, we have 4–4p

10 ≤ x – p. Thus,

x≥ 6p + 4
10

.

Which implies that x∈ [ 1735 , 1]⊂ [
1
7 , 1].

Therefore, Yp = p+4
5 , Yx = x+4

5 . So,

|Yp –Yx| = ∣p + 4
5

–
x + 4
5
∣ = ∣p + x

5
∣≤ |p + x|,
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which means that 1
2 |p – Yp|≤ |p – x| implies |Yp – Yx|≤ |p – x|, so Y satisfies condition

(C).
(ii) p>x. In this case, we have 4–4p

10 ≤ p – x. Thus,

x≤ 14p – 4
10

.

Which implies that x∈ [– 1
5 , 1]. As x∈ [0, 1], we get

10x + 4
14

≤ p⇒ p∈ [2
7
, 1] .

Now, let p∈ [ 27 , 1] and x∈ [ 17 , 1]. As x∈ [
1
7 , 1] is previously discussed in (i), there-

fore, now, working for x∈ [0, 17) and p∈ [ 27 , 1], we have Yp =
p+4
5 , Yx = 1 – x. Thus,

|Yp –Yx| = ∣p + 4
5

– (1 – x)∣ = ∣5x + p – 1
5

∣ .

We first suppose that p∈ [ 27 ,
1
2 ] and x∈ [0, 17), then

∣5x + p – 1
5

∣ = 3
70
< 5
14
= |p – x|.

Which implies 1
2 |p–Yp|≤ |p–x|⇒ |Yp–Yx|≤ |p–x|. Now, let assume that p∈ [ 12 , 1]

and x∈ [0, 17), then

∣5x + p – 1
5

∣ = 1
7
< 6
7
= |p – x|,

which shows that
1
2
|p –Yp|≤ |p – x|⇒ |Yp –Yx∥≤ |p – x|.

Thus, 1
2 |p–Yp|≤ |p– x|⇒ |Yp–Yx|≤ |p– x|, which shows that Y satisfies

condition (C).
Hence, it is established that Y is a Suzuki generalized nonexpansive mapping.

To illustrate the faster convergence of the proposed Picard–Abbas iteration process (10),
we compare it against the Noor, Abbas, Thakur, Sahu, and Picard–Noor iteration methods.
The selected parameters are 𝜌n = 0.80, 𝜓n = 0.65, and 𝜂n = 0.65, with the stopping criterion
defined as ||un –un+1|| < 10–8 and the initial point u0 = 0.1. The corresponding results are
presented in Fig 1 and Table 1.

The findings indicate that, after the first iteration, the value obtained by the Picard–Abbas
iteration process (0.98716480) is the closest to the fixed point 1 among all compared meth-
ods. As shown in Table 1, each iteration method converges at a different rate. The proposed
Picard–Abbas iteration is the fastest, reaching the fixed point in 5 iterations. The Sahu and
Picard–Noor iteration methods require 6 iterations to converge. TheThakur and Abbas pro-
cesses exhibit similar convergence behavior. In contrast, the Noor iteration method shows the
slowest convergence, taking 15 iterations to reach the fixed point.
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Fig 1. Convergence behavior of Picard–Abbas, Noor, Abbas,Thakur, Sahu and Picard–Noor iteration processes
corresponding to Table 1.

https://doi.org/10.1371/journal.pone.0334440.g001

Table 1. Iterates produced by various iteration processes for the mapping Y given in (28) and the starting point
u0 = 0.1.
n Picard–Abbas Sahu Picard–Noor Thakur Abbas Noor

iteration iteration iteration iteration iteration iteration
0 0.1 0.1 0.1 0.1 0.1 0.1
1 0.98716480 0.95561600 0.95233920 0.95081600 0.93582400 0.76169600
2 0.99978926 0.99751166 0.99746460 0.99621952 0.99473141 0.93661495
3 0.99999654 0.99986049 0.99986512 0.99970942 0.99956747 0.98314059
4 0.99999994 0.99999218 0.99999283 0.99997766 0.99996449 0.99551567
5 1 0.99999956 0.99999962 0.99999828 0.99999708 0.99880724
6 1 0.99999998 0.99999998 0.99999987 0.99999976 0.99968274
7 1 1 1 0.99999999 0.99999998 0.99991562
8 1 1 1 1 1 0.99997755
9 1 1 1 1 1 0.99999403
10 1 1 1 1 1 0.99999841
11 1 1 1 1 1 0.99999958
12 1 1 1 1 1 0.99999989
13 1 1 1 1 1 0.99999997
14 1 1 1 1 1 0.99999999
15 1 1 1 1 1 1

https://doi.org/10.1371/journal.pone.0334440.t001

5 Comparison via polynomiography
Mathematician and computer scientist Bahman Kalantari introduced polynomiography,
a digital art form and visual analytic technique for exploring root-finding problems [27,
28]. Although related concepts, such as basins of attraction, dynamical planes, and speed
of convergence, had appeared earlier in the literature, Kalantari was the first to consolidate
these ideas under a unified framework. He defined polynomiography as the art and science
of visualizing the approximation of the zeros of complex polynomials through iterative
functions, referring to the resulting images as polynomiographs. Various types of itera-
tion processes have since been compared and analyzed using polynomiographic techniques
(see [29–33]).
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The general procedure for generating polynomiographs is outlined in Algorithm 1. Color
assignment within this algorithm can follow various approaches; in this study, we adopt a
method that integrates basins of attraction with convergence speed [34]. Each root of the
polynomialW is assigned a distinct non-black color, while points that do not converge are
marked in black. For each initial point u0 in the region A, the iterative method I is applied for
up to K iterations. If convergence occurs in fewer than K steps, we determine the root closest
to the resulting point un and assign its corresponding color to u0. The brightness of the color
reflects the speed of convergence: lighter shades indicate faster convergence, while darker
shades represent slower convergence. If no convergence is achieved within K iterations, u0
is colored black. This scheme effectively visualizes both the destination of convergence (via
color) and the convergence rate (via shading), providing intuitive insights into the behavior of
the iterative process.

Algorithm 1. Creation of a polynomiograpgh.

Input: W ∈ℂ[Z], degW ≥ 2 -- polynomial; I -- iterative method; A⊂ℂ --
region; K -- maximum number of iterations; 𝜀 -- precision; colors --
color map.

Output: Polynomiograph of the complex-valued polynomial W over the region
A.

1 for u0 ∈ A do
2 n = 0
3 while |W(un)| > 𝜀 and n < K do
4 un+1 = I(un,W)
5 n = n + 1
6 Determine the color from the color map colors based on n and un and

assign it to u0

One well-known root-finding algorithm is the Newton’s iteration method, also known as
the Newton–Raphson method. Its definition is:

un+1 = un –
W(un)
W ′(un)

, (29)

where u0 ∈ℂ is the starting point andW is a polynomial with complex coefficients. We can
write (29) in terms of a fixed point iteration process as follows:

un+1 =Y(un), (30)

where Y(u) = u– W(u)W′(u) . Thus, this is the Picard iteration. If the iteration process (30) con-
verges to any fixed point x∈ℂ of Y , then one has

x =Y(x) = x – W(x)
W ′(x)

. (31)

Thus, W(x)W′(x) = 0, which means that x is a root ofW . Finding the fixed points of Y is there-
fore equal to solving the problem of finding the roots ofW . This enables us to use various
fixed point iteration processes for Y , such as the suggested Picard–Abbas iteration.

In the considered example, we use three sets of iterations’ parameters
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• 𝜌n = 0.03, 𝜓n = 0.06, 𝜂n = 0.06;
• 𝜌n = 0.6, 𝜓n = 0.6, 𝜂n = 0.6;
• 𝜌n = 0.9, 𝜓n = 0.9, 𝜂n = 0.9.

For each of the three sets of iteration parameters, we generated polynomiographs of
the polynomialW(u) = u6 –1, which has six roots: –1.0, –0.5–0.866025i, –0.5+ 0.866025i,
0.5–0.866025i, 0.5+ 0.86602540i, and 1.0. The iteration schemes used include Picard–Abbas,
Sahu, Abbas, Thakur, Noor, and Picard–Noor methods. The parameters for polynomiograph
generation were: region A = [–2, 2]2, maximum number of iterations K = 45, and 𝜀 = 0.001.
Additionally, for each polynomiograph, we computed the Average Number of Iterations
(ANI) as proposed in [35].

The polynomiographs generated for the first set of parameter values are shown in Fig 2.
Distinct convergence patterns are observed for the Picard–Abbas, Sahu, Abbas, Thakur, Noor,
and Picard–Noor iteration processes. Visual inspection indicates that the proposed Picard–
Abbas iteration exhibits the fastest convergence, followed by Abbas, Picard–Noor, Sahu,
Thakur, and Noor. Notably, for the Noor iteration, no points within the considered region

Fig 2. Comparison of polynomiographs obtained from different iteration processes with parameters 𝝆n = 0.06, 𝝍n = 0.06, 𝜼n = 0.06.

https://doi.org/10.1371/journal.pone.0334440.g002
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converged to any root, resulting in a completely black polynomiograph. ANI values in Table 2
corroborate these findings: Picard–Abbas (4.156), Abbas (6.110), Picard–Noor (8.392), Sahu
(8.609), andThakur (10.786).

The polynomiographs for the parameter settings 𝜌n = 0.6, 𝜓n = 0.6, and 𝜂n = 0.6 are shown
in Fig 3. The results show that the Noor iteration exhibits the slowest convergence speed, with
the highest ANI value of 12.068. Among the iterations studied, the Picard–Abbas method

Table 2. ANI values of the polynomiographs given in Figs 2–4.
Iteration 𝝆n = 𝝍n = 𝜼n = 0.06 𝝆n = 𝝍n = 𝜼n = 0.6 𝝆n = 𝝍n = 𝜼n = 0.9
Picard–Abbas 4.156 3.746 3.817
Sahu 8.609 5.216 4.388
Abbas 6.110 5.390 5.370
Picard–Noor 8.392 4.778 3.720
Noor 45 12.068 6.223
Thakur 10.786 6.078 4.738

https://doi.org/10.1371/journal.pone.0334440.t002

Fig 3. Comparison of polynomiographs obtained from different iteration processes with parameters 𝝆n = 0.6, 𝝍n = 0.6, 𝜼n = 0.6.

https://doi.org/10.1371/journal.pone.0334440.g003
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achieves the fastest convergence, yielding the lowest ANI value of 3.746. In terms of conver-
gence speed, the Picard–Noor iteration ranks second with an ANI of 4.778, followed by the
Sahu (5.216), Abbas (5.390), andThakur (6.078) iterations.

The third configuration employs high values for the iteration parameters. Similar to the
previous cases, the Noor iteration exhibits the slowest convergence, as shown in Fig 4. In con-
trast, the Picard–Abbas iteration once again achieves the fastest convergence. Interestingly,
the high-parameter setting leads to faster convergence across all methods, requiring fewer
iterations to reach the polynomial’s roots. The ANI values corresponding to this configura-
tion are presented in Table 2. The Picard–Noor iteration yields the lowest ANI value of 3.720,
followed closely by the Picard–Abbas iteration with an ANI of 3.817.

6 Conclusion
Our analysis of Suzuki mappings using the Picard–Abbas iteration process demonstrates its
enhanced convergence performance. The numerical results in Table 1 confirm its efficiency
relative to several established methods, including those of Noor, Sahu, Thakur, Abbas, and

Fig 4. Comparison of polynomiographs obtained from different iteration processes with parameters 𝝆n = 0.9, 𝝍n = 0.9, and 𝜼n = 0.9.

https://doi.org/10.1371/journal.pone.0334440.g004
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Picard–Noor. Furthermore, visualizations generated through polynomiography provide addi-
tional insight into the convergence behavior, highlighting the iteration’s faster convergence
rate. Collectively, these findings suggest that the Picard–Abbas process is a robust and effec-
tive tool for solving fixed-point problems, with promising potential for broader applications
in mathematical and computational contexts.
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