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Abstract

Research on the Mandelbrot set has been ongoing for decades and occupies a
significant place in the study of fractal geometry. It is obtained by employing a
function in the complex plane in an iterative procedure. This method is further
developed in existing literature in two ways: either by employing complicated
functions of various kinds or by using iterative methods beyond the standard Picard
iteration. In both cases, we use a single function to obtain the Mandelbrot set. In
this paper, we propose an approach in which we use two polynomial functions
instead of one. For this aim, we have utilized the Das—Debata iteration, which
combines two operators into a single iterative process. Polynomials of the form
2™ 4+ pz +r, where z,p,r € C, m € N, and m > 2, are used to derive the escape
criterion. By employing the escape time algorithm, we have provided interesting
graphical representations of Mandelbrot sets that exhibit notable variations in patterns
compared to those obtained by the Picard iteration. To create a comparison analysis
of the resulting sets based on the iteration parameters, we merged polynomials of
the same degree and different degrees and changed their ordering in the iterative
process. Finally, we examined two numerical measures: the average escape time and
the non-escaping area index, to determine how these fractal sets rely on the iteration
parameters, which turns out that the dependency of both iterative approaches is
nonlinear.
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1 Introduction

Fractal geometry offers a foundation for analyzing complex, self-similar patterns that
appear in mathematical systems and in nature [21]. The Mandelbrot set is one of the
most celebrated fractals and its boundary reveals an infinite complexity governed by
a simple iterative method, making it a rich subject of exploration in both theoretical
and applied contexts. A popular method for generating fractals is through the
successive iterative method

Zip1 = [(2k), )

where f'is a well-defined complex function. This method has wide applications in
generating fractals of different varieties, such as the Mandelbrot set [21], the Julia set
[9], Biomorphs [18], root-finding fractals [11, 14] (the so-called polynomiography),
iterated function system [6], inversion fractals [22] etc.

Our focus in this paper is only on the Mandelbrot set, which is defined using the
feedback process (1) and the quadratic complex polynomial f.(z) = 22 + ¢, where
¢ is a complex number. Many generalizations of the Mandelbrot set have now been
developed by researchers. Lakhtakia et al. suggested utilizing polynomials of the
type zP + c instead of the quadratic one in [19]. Several studies have used the rational
function, including [7, 25]. Works like [10, 15] have used functions, including
exponential and trigonometric kinds. The initial development of the Mandelbrot and
the Julia set is based on the iterative process (1), which is famously known as the
Picard iteration. In the context of fractal generation, Rani and Kumar in [24] utilized
the Mann iteration process, a generalization of the Picard iteration, to produce
superior Julia sets for the first time in 2004. A two-step Ishikawa iteration process
for the relative superior Julia and Mandelbrot sets was examined by Rana et al. in
[23]. In [4], a three-step Noor iteration method was employed to produce Mandelbrot
and Julia sets. The viscosity iteration method is applied in [16, 18] for generating
fractals from polynomial functions. Hybrid iteration methods such as Picard—Mann,
Picard—S, and Picard-Thakur have been utilized to produce Mandelbrot and Julia
sets in works like [2, 27, 31]. Another development in this direction is due to Tanveer
et al. [29], where the authors replaced the parameter ¢ of the function 2P + ¢ by
log ¢! and used the Mann and Picard-Mann iteration to generate Mandelbrot sets.
Subsequently, this function was used to create fractals through CR iteration [28] and
four-step iteration [1]. In addition to the explicit iterations, various implicit iterations
such as Jungck—Mann [20], Jungck—Ishikawa [3], and Jungck—Noor [30] have
contributed to the generation of fractals.

In the extensive body of research on fractal generation—particularly for
Mandelbrot and Julia sets—most studies have concentrated on the dynamics
of a single complex function under fixed-point iteration. Comparatively little
attention has been given to combining multiple functions within this framework.
The only notable approach in this direction has been the Das—Debata iteration, a
generalization of the Ishikawa iteration originally developed for studying common
fixed points of quasi-nonexpansive mappings. In [11], this iteration was applied
to two root-finding methods, producing fractal images that reflected the combined
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dynamics of the methods. Later, in [26], the same iteration was employed to generate
Mandelbrot and Julia sets corresponding to a polynomial and a rational function.

In this paper, we advance this line of work by, for the first time in the literature,
applying the Das—Debata iteration to a pair of polynomials, thereby extending the
approach of [26]. Specifically, we establish an escape criterion for polynomials of the
form 2™ + pz 4+ r and present graphical examples of Mandelbrot sets arising from
combinations of two polynomials, both of equal and differing degrees, with their
placement within the iteration scheme systematically varied. Furthermore, to explore
how the fractal structures depend on iteration parameters, we employ two numerical
measures—the average escape time and the non-escaping area index—introduced in
[17].

The structure of the rest of the paper is as follows. Some prerequisites necessary
for the rest of the paper are presented in Section 2. In Section 3, we establish the
escape criterion for the functions and iteration scheme under consideration. Section 4
includes some graphical examples of Mandelbrot sets and their comparison. In Sec-
tion 5, we examine the relationships between the parameters of the iteration and the
numerical measures. In Section 6, we provide some final remarks.

2 Preliminaries

We introduce the essential definitions in this section to lay the groundwork for our
main result.

Definition 1 ([9]) Let 7. be a complex function with a complex parameter ¢. The
filled Julia set of 7. is defined as

Fr, ={2€C:|T}(z)| » oo as n — co}.
The boundary of the filled Julia set %7, is called a Juliaset _#r,i.e., 1, = 0Fr,.

Definition 2 ([32]) The Mandelbrot set for a complex function 7, where ¢ is a com-
plex parameter, is defined as the set of parameters ¢ € C for which _#7, is connected.
Equivalently, the Mandelbrot set can be defined as

M ={ceC:|T}(n)] » oo as n — oo},
where 7 is a critical point of T, i.e., T%(n) = 0.

Definition 3 ([13]) Let T : X — X be a mapping and {z, } be a sequence in a space
X (e.g., the complex numbers space) with an initial zy € X. Then, the sequence is
called the Ishikawa iteration if

T = (1 — ozk)zk + OékT(Zk.),

21 = (1 — Br) 2z + BT (xr), @
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where {ay }, {8k} are sequences in (0, 1].
Das and Debata generalized the Ishikawa iteration for two operators 7,5 : X — X
and applied it to find common fixed points of quasi-nonexpansive mappings [8].

Definition 4 ([8]) Let S, T : X — X be mappings and {z,, } be a sequence in a space
X (e.g., the complex numbers space) with an initial 2y € X. Then, the sequence is
called the Das—Debata iteration if

xp = (1 — ag)zk + apS(zk),

21 = (1 — Br) 2z + BiT (xk), ®)

where {ay }, {8k} are sequences in (0, 1].
Let us notice that the iteration (3) with S = T reduces to the Ishikawa iteration.

In the rest of the paper, we assume that {ay}, {Sr} are the constant sequences
ar = «, B = B, where o, 8 € (0, 1].

3 Escape criteria

In this section, we employ the Das—Debata iteration scheme (3) in conjunction with
two complex polynomials to establish the escape criterion necessary for developing
escape time algorithm used in generating Mandelbrot sets.

Theorem 1 Let T.(z2)=2"+4+pz+r and S (2)=2"+q+r,  where
m,n € N\ {1}, and p, q,r € C. Moreover, let {2z} be the Das—Debata orbit of
zZ0 € (C, ie.,

xp = (1 —a)zk + aSr(2k),
2pr1 = (1 = B)zn, + BT (w4),

where, o, 8 € (0, 1]. Suppose that

o (527 )

Then limy_; o0 | 2| = 00.

4)

Proof For k = 0 in the first step of the Das—Debata iteration, we have

|zo] =|(1—-a)zg+ a2l +qzo+ 1) ©)
> alzo|™ — algzo| — alr] — (1 — a)|z]-

From (5), we have |zg| > |r|. Therefore, from (6) we get
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lzo| > alzo]™ — algzo| — alzo| — (1 — a)l20]
= alzo|" — algzo| — |20 (7
= |Z()|(Oé|Zo|n*1 —alg| - 1).

1
Again  from (5), we get |zo| > (2%““”) ""'. Which implies that

|"=1 — alq| — 1 > 1. Therefore, from (7), we have

alzg
|| > [20- ®)

Proceeding to the second step of the Das—Debata iteration, we have

‘Z1| = |(1 - ﬁ)ZO +B($6n + pxo +T)‘ )
> Blao|™ — Blpxo| — Blr| — (1 — B)]z0l.

Using the condition |zg| > |r|, we get

|z1] = Blzo|™ — Blpxo| — Blzo| — (1 — B)|20]

= Blol™ = Blpllzol — [zo]- 10
Since |zg| > |20]|, from (10), we get
|21] Zﬁ|$o|m—5|%’||$o|—|33o| (1
= |zo| (Blzo|™ " = Blp| = 1)
From (5) and (8), we have
2+ Blp|\ 7
" -
20| > |z0] > <p> . (12)
B
Therefore, B|zo|™ ! — Blp| — 1 > 1. Thus, from (5) and (11), we get
21| > |zo| > |20 (13)

Therefore, there exists some v > 0 such that |z1| > (1 + 7)|zo]-
Because |21| > |20/, so we may repeat the same reasoning for k£ = 1 obtaining

|22 > (L+7)[z1] = (147)*|z0- (14)
Therefore, at the k-th iteration, we get
|2k > (1 +7)"|z0)- (15)

Hence |z| — oo as k — oo.
From Theorem 1 we get the following corollary.
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Corollary 1 Let T.(z2)=z"+4+pz+r and S, (2)=2"+qz+r, where
m,n € N\ {1}, and p, q,r € C. Moreover, let {2z} be the Das—Debata orbit of
zZ0 € (C, ie.,

xp = (1 —a)zg + aSr(2k),
zp+1 = (1= B)zk + BT (zk),

where, o, 8 € (0, 1]. Suppose that

o >max{r|, (ﬂo"q')(ﬂﬁ'p')} (7)

for some | € N. Then limy_, o | 2| = 00.

(16)

3
3

Remark 1 For the sequence {zx} defined in (4), the value

R:max{|7“7 (2 +aa|q|)"—1 ) (2 —|—ﬁ/3|p|>"—l} (18)

is called the escape radius.

S

4 Graphical examples of mandelbrot sets

In this section, we use the Das—Debata iteration which uses two polynomial
functions to illustrate some graphical examples of Mandelbrot sets that are
generated using the escape-time algorithm shown in Algorithm 1. The graphical
examples of the Mandelbrot sets are generated by varying both the parameters
a, (B of the Das—Debata iteration as well as by changing the position of the two
polynomials in the iteration process. Additionally, we apply both polynomials
independently in the Picard iteration method to show the difference between
those sets and the set obtained as a combination of both polynomials via the
Das—Debata iteration.
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Input: S, 7 : C — C — functions considered in Theorem 1; «, 8 € (0, 1] — parameters for the
Das-Debata iteration; A C C — area; K — the maximum number of iterations;
colormap|0..H] — color map with H + 1 colors.

Output: Mandelbrot set for area A.

1 forr € Ado
1 _1
2 | & :m[w (Zal) 7T (2410 ) ]

k=0
zo=r
while |z;| < Rand k£ < K do
\‘ xp =1 —a)zp +aSr(zp)

zkt1 = (1 = B)zg + BT (xp)
k=k+1

i=HE)

10 color r with colormapli]

e NN AW

Algorithm 1 Generation of Mandelbrot set.

In the first example, we consider A = [—2,1] x [-1.5,1.5], K = 50, the color
map presented in Fig. 1, and the following functions:

Fi(z) =2+, (19)
Fy(z) =22+ (20)

In Fig. 2, we present examples of Mandelbrot sets generated using the Picard
iteration for the complex polynomials F; and F3, respectively. Figure 2(b) depicts
the classical Mandelbrot set for the 2nd-degree polynomial, while the set for the
4th-degree polynomial, shown in Fig. 2(a), exhibits a distinct 3-fold symmetry.

The combination of the F; and F5 polynomials in the Das—Debata iteration
produces unique patterns in the Mandelbrot sets, as illustrated in Figs. 3, 4, 5 and 6,
which are dependent on the iteration parameters «, 5. In Fig. 3 we fix the parameter (8
at 0.9 and vary the parameter o with 7' = F3 and S = F5. In Fig. 3(a), with a = 0.2,
the Mandelbrot set exhibits symmetry about the x-axis and displays a more rounded
shape. As « increases, the sets retain their symmetry but shift toward the center of the
region. Additionally, a slight reduction in the size of the sets is observed, and the bud-
like structures along the boundaries become more prominent. The Mandelbrot sets in
Fig. 4 are generated using the same parameter values as in Fig. 3, but with different
orders of the polynomials in the Das—Debata iteration, i.e., 7'= F5 and S = F.
The resulting Mandelbrot sets remain symmetric about the x-axis, but their overall
structure differs significantly from those in Fig. 3. A sharp reduction in the size of the
set is observed as « increases from 0.2 to 0.6. Additionally, two small disconnected
components appear at the top right and bottom corners of the region, which gradually
move closer to the central body of the set as « increases.

0 ) 10 15 20 25 30 35 40 45 50

Fig. 1 Color map used in the graphical examples of Mandelbrot sets
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1.50

0.75

0.00

-0.75

_1'§9,00 -1.30 -0.50 0.25 1.00 _1'§8.00 -1.30 -0.50 0.25 1.00

() (b)

Fig. 2 Mandelbrot sets generated by Picard iteration with (a) F1 and (b) F> functions

In Fig. 5, we have taken into account the variation in the parameter 5 and fixed
value of o« = 0.01 with T' = Fj, S = F5 in the Das—Debata iteration. The resultant
Mandelbrot sets show a perfect 3-fold symmetry for all the considered values of the
parameter (3. This characteristic is mostly dominated by the 4th-degree polynomial
z* + r, and it also happens when a 4th-degree polynomial is used in Picard iteration
(Fig. 2(a)). The size of the sets reduces as the values of 3 are increased and this
is mostly evident when § is increased from 0.2 to 0.6. Also, with the increasing
values of /3, the boundary of the set becomes more complex. Nearly resembling the
Mandelbrot set generated for the 4th-degree polynomial with the Picard iteration,
many bud-like components of varying sizes are visible on the boundary of the set for
B = 1. With the same parameter values as in Fig. 5, and by changing the ordering of
the polynomials, i.e., T' = F5 and S = F1, Fig. 6 displays the resulting Mandelbrot
sets. In this instance, we observe that the properties of the 2nd-degree polynomial
mostly dominate the Mandelbrot sets. The majority of the region is covered in black
for 8 = 0.2, indicating that the number of escaping points is low. As 3 is increased,
this feature becomes less prominent. Additionally, the sets converge towards the
classical Mandelbrot set for the 2nd-degree polynomial as 3 increases. The classical
Mandelbrot set (Fig. 2(b)) and the generated Mandelbrot set for 5 = 1 in Fig. 6(d)
are almost similar.

In the second example, we consider A = [—~1.5,1.5]2, K = 50, the color map
presented in Fig. 1, and the following functions:

F3(z) = 28 +1.082 + 7, 1)
Fy(z) = 2% — 0.052 + 7. (22)

In Fig. 7, the Mandelbrot sets are generated for the polynomials F3, Fy by the Picard
iteration. There is a 7-fold symmetry in both figures. From the figures, it is quite
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1.50

0.00

15800 ; ) 1.00 "800 -1.30 -0.50 0.25 1.00
(a) x=0.2 (b) x=0.6
1.50 1.50
0.75
0.00/
-0.75
15800 -1.30 -0.50 0.25 1.00 ~"%8.00 -1.30 -0.50 0.25 1.00
(c) a=0.8 d a=1

Fig. 3 Mandelbrot sets generated by the Das—Debata iteration with T = Fy, S = Fa, f = 0.9 and
different values of o

interesting to note that only a little change in the coefficient of z in the polynomials
impacts the size and shape of the sets.

In the Das—Debata iteration, we combine two 8th-degree polynomials 7" = F3 and
S = F}j. The resulting Mandelbrot sets, which vary in the parameter o and have a
fixed value of 8 = 0.08, are shown in Fig. 8. For a« = 0.1 in Fig. 8(a), the fractal
appears connected with sharp filament-like protrusions extending outward from the
center. Each of the seven primary components sharpens when « increases, giving
the sets a flower-like appearance. However, it is apparent that for « = 0.7 and 1
in Figs. 8(c) and 8(d), there is little change in the structures of the sets, indicating
that the variation of the parameter o does not affect the overall structure of the sets.
Despite this, the generated patterns in the Mandelbrot sets have striking differences
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1.50 : 1.50

0.00 0.00

-0.75 g -0.75

158 ; 00 "800 -1.30 -0.50 : 1.00

(@ a=0.2 (b) x=0.6

1.50 = 1.50

0.75 0.75
0.00 0.00!

-0.75 -0.75

1800 -1.30 -0.50 i 00 "800 -1.30 -0.50 : 1.00
(c) a=0.8 d o=1

Fig. 4 Mandelbrot sets generated by the Das—Debata iteration with T = Fp, S = F1, § = 0.9 and
different values of o

in shape, size, and colors from those obtained by the Picard iteration. The Mandelbrot
sets shown in Fig. 9 are generated with the same a and 3 values as in Fig. 8, but with
T = Fy, S = F3. The sets exhibit distinct patterns from those in Fig. 8. For a = 0.1,
Fig. 9(a) shows seven identical petal-like components extending from the central
core, with a bud-like structure on top of each of the seven components. The overall
size of the sets decreases when « is increased, and there are also some discernible
changes in the structure of the seven primary components. Additionally, the bud-like
structure began to move out from the main body as « is increased. In contrast to the
last illustration, the Mandelbrot sets do not appear to vary in color in the present one.

The Mandelbrot sets in Fig. 10 are obtained by varying the parameter 5 with fixed
a =0.08and T = F3, S = F4. The Mandelbrot set for 3 = 0.1 is almost identical to
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1.50 1.0

0.75

0.00

-0.75

1.00 -1 '§8.00 -1.30 -0.50 : 1.00

() B=0.2 (b) B =0.6

0.00

-0.75

-1.30 -0.50 E .00 - '58.00 -1.30 -0.50 . 1.00

(©) p=038 d p=1

Fig. 5 Mandelbrot sets generated by the Das—Debata iteration with 7" = F, S = F, a = 0.01 and
different values of 3

that in Fig. 8(a) for & = 0.1. But the patterns are very different when [ is increased.
The size of the set drastically decreases when f is increased from 0.1 to 0.4. As the
structure becomes increasingly fractured, the arm of the set exhibits more gaps and
noticeable bulbous features for 3 = 0.4 and 0.7. The outer border displays a more
noticeable petal-like structure at = 1, with the arms seeming smoother and the
detailed filaments losing their dominance. Figure 11 displays the Mandelbrot sets that
are generated by yet again altering the orders of the polynomials. Figures 11(a) and
11(b) which are obtained for 5 = 0.1 and 0.4 are almost identical with the sets gener-
ated for « = 0.1 and 0.4 in Fig. 9. The arms of the Mandelbrot set grow increasingly
fractured, and small satellite-like structures begin to emerge close to the border for
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1.50 1.0

0.75

0.00

-0.75

-1.30 -0.50 . .00 -1 ‘§8.00 -1.30 -0.50 : 1.00

a) B=0.2 (b) B =0.6

-1.30 -0.50 E : =2. -1.30 -0.50

(© p=0.8 d p=1

Fig. 6 Mandelbrot sets generated by the Das—Debata iteration with 7" = F», S = F1, a = 0.01 and
different values of 3

B = 0.7. The structure shows more fragmentation at 3 = 1. There is some variation
in color in the boundaries of the set only for the values 5 = 0.7 and 1.

In the third example, we consider A = [—1.5,1.5]%, K = 50, the color map pre-
sented in Fig. 1, and the following functions:

Fs(2) =28 +z+, (23)
Fs(2) =2+ 2+ (24)

Mandelbrot sets produced by the Picard iteration for the 8th and 5Sth-degree poly-
nomials, F5 and Fg, respectively, are shown in Fig. 12. Both sets are quite tiny and
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1.50 1.50

0.75 075
&
0.00 8 0.00
#
-0.75 -0.75
-
150 50 -0.75 0.00 0.75 150 ~"X 50 -0.75 0.00 075 1.50
() (b)

Fig. 7 Mandelbrot sets generated by Picard iteration with (a) F3 and (b) F4 functions

concentrated in the region’s center. The image exhibits 7-fold symmetry for the 8th-
degree polynomial and 4-fold symmetry for the Sth-degree polynomial.

In the Das—Debata iteration, we combine 7' = F5 and S = Fg. The resulting Man-
delbrot sets, by varying the parameter « with a fixed value of 5 = 0.01, are shown
in Fig. 13. The figures suggest that both polynomials have an impact on the struc-
ture of the Mandelbrot sets. In Fig. 13(a), the figure is expanded to all regions with
an irregular symmetry for o = 0.1. The set’s size drastically shrinks, and the shape
nearly takes on a quadrilateral shape when « is increased to 0.4. While the overall
shape of the sets stays the same, there is a distinct drop in size as « is increased more.
The Mandelbrot sets with the same parameter values and shifting the orders of the
polynomials, i.e., T" = F5, S = F5 in the Das—Debata iteration are shown in Fig. 14.
The dark area in Fig. 14(a) expands outward and covers a larger area for a = 0.1.
There are structures that resemble petals, although they are irregular and not well-
defined. In Fig. 14(b), when « is increased to 0.4, the set seems more centered and
more organized, with a distinct boundary and a little contraction in size. Also, the
petal-like features become more uniformly spaced and sharper. The size of the sets
progressively shrinks and the petal-like structures become more stable as the values
of « are increased to 0.7 and 1.

Figure 15 shows the Mandelbrot sets that combine the same 8th and 5Sth-degree
polynomials 7' = F5, S = Fg in the Das—Debata iteration and vary the parameter
B with a fixed value of o = 0.01. Figure 15(a) shows that the set has elongated,
star-like shapes with sharp spikes for 5 = 0.1. The black area is larger and takes
up a significant amount of the area under consideration. The set’s structure grows
increasingly complex at 5 = 0.4, with fractal-like patterns appearing in the arms. The
star-like arms get more complex and exhibit greater self-similarity as the set shrinks
a little, concentrating the complexity inward. The pattern becomes more balanced for
B = 0.7. The arms fold into a more rounded shape, and the core structure gets denser.
With the same values of the parameters, the Mandelbrot sets obtained by chang-
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1.50
0.75
0.00
-0.75
1% 50 -0.75 0.00 0.75 150 " 50 -0.75 0.00 0.75 1.50
(a) o =0.1 (b) o = 0.4
1.50 1.50
075 0.75
0.00 0.00
-0.75 -0.75
1% 50 -0.75 0.00 0.75 150 "4 50 -0.75 0.00 0.75 1.50
() a=0.7 (d oo=1

Fig. 8 Mandelbrot sets generated by the Das—Debata iteration with 7" = F3, S = F4, = 0.08 and
different values of «

ing the orders of the polynomials, i.e., T' = Fg, S = F5, are presented in Fig. 16.
For 5 = 0.1 the dark area is wide, with extended arms reaching outward. The edges
acquire more curvature and the lobes get more compact in the Mandelbrot set for
B = 0.4. The structure gets more regular as the fractal’s overall size decreases, focus-
ing the details inward. The sets contract more when the values of 5 are increased to
0.7 and 1, and the boundary features become more complex.
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1.50 1.50

0.75
0.00
-0.75 -0.75
_1'§?.50 -0.75 0.00 0.75 1.50 _1'5—39.50 -0.75 0.00 0.75 1.50
(a) x=0.1 (b) a=0.4
1.50 1.50
0.75 0.75
0.00 0.00
-0.75 -0.75 .
_1'§9.50 -0.75 0.00 0.75 1.50 _1'§9.50 -0.75 0.00 0.75 1.50
(c) x=0.7 doa=1

Fig. 9 Mandelbrot sets generated by the Das—Debata iteration with 7" = Fy, S = F3, = 0.08 and
different values of «

5 Numerical results

When two distinct polynomials are used in the Das—Debata iteration for the genera-
tion process, the graphical examples of the Mandelbrot set from Section 4 exhibit
complicated structures. As we can see from the graphical representations, the itera-
tion parameters «, 3 have a significant impact on determining the size and shape
of the Mandelbrot sets. It is quite interesting to study the dependency of the shape
and size of the sets on the iteration parameters. We employ two numerical measures
that track the escaping and non-escaping points separately, which were first pre-
sented in [17]. The first metric is the average escape time (AET), which tells us how
many iterations on average were performed for the escaping points in a given area.
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-0.75 0.00

(@) B=0.1 (b) =04

1'§?.50 -0.75 0.00 ; 1.50 - '5?.50 -0.75 0.00

() p=07 d B=1

Fig. 10 Mandelbrot sets generated by the Das—Debata iteration with 7" = F3, .S = F4, o = 0.08 and
different values of 3

Another important metric is the non-escaping area index (NAI), which provides us
with insight into the relative set size in a specific area. It is defined as the ratio of the
number of non-escaping points to the number of all points in the considered area.

In this study, the region 4 has been divided into an 800 x 800 grid, and the param-
eters «, 0 have been varied with a 0.01 step length. As a result, 10, 000 images of the
Mandelbrot set were generated for a single heatmap.

The AET and NAI plots for the Mandelbrot sets derived by merging the 4th and 2nd
degree polynomials F; and F5 in the Das—Debata iteration are displayed in Figs. 17
and 18, respectively. An early escape for the escaping points is shown by the blue area
nearly everywhere in the parameter space of the AET plot in Fig. 17(a), which shows
a homogeneous distribution in the AET values that is close to 5 in most places. When
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Fig. 11 Mandelbrot sets generated by the Das—Debata iteration with T" = Fy, S = F3, o = 0.08 and
different values of 3

the value of the parameter 5 is low, the AET values are greater. The AET values of
23.17 and 1.29 are the highest and lowest, respectively, at («, 3) = (0.09,0.01) and
(a, B) = (1,0.53). The AET plot in Fig. 17(b) displays nearly identical behavior as
in the preceding instance, but with greater AET values, when the ordering of the poly-
nomials is changed in the iteration process. In the majority of the parameter space,
the AET values are near 10. However, a characteristic that stands out is that no points
have left the region for the lower values of the parameters where the AET is not com-
puted. In this case, (a, 8) = (0.05,0.01) yields the greatest AET value 48.61, while
(o, B) = (0.96, 1) yields the lowest, 1.96. There are several very noticeable charac-
teristics in the NAI plots from Fig. 18. The NAI value never reaches 1 in Fig. 18(a),
indicating that there are always some escape spots in the area for all parameter values
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Fig. 12 Mandelbrot sets generated by Picard iteration with (a) F5 and (b) Fg

taken into consideration. Higher NAI values are often obtained when the parameter
B has a lower value and in the bottom half of the parameter space. When the NAI
is 0.99 at («, 5) = (0.14,0.01), the Mandelbrot set in this case takes up 99% of the
whole area, while the smallest set is generated at («, 5) = (0.01, 1), where the NAI
is 0.22. There are certain locations in the parameter space where both parameters
take lower values, the NAI takes the maximum value of 1, and there are no escaping
points in the area when the ordering of the polynomials is altered in the iteration, as
seen in the NAI plot in Fig. 18(b). Also, compared to the previous case, the lower
diagonal area of the parameter space is where the larger NAI values are obtained. The
value of (o, ) = (1, 1) yields the lowest NAI of 0.16.

Figures 19 and 20 displays the AET and NAI plots for the Mandelbrot sets created
by combining the two 8th-degree polynomials F3 and F and altering the ordering of
the polynomials in the Das—Debata iteration. In both cases, the AET plots (Fig. 19)
show that the AET values are relatively low, indicating that the escaping points exit
the region early in the iteration over the parameter space. Both scenarios have a
similar pattern for the AET values, meaning that they increase as we approach lower
values of the parameters «, 3. The values of the parameter where a comparatively
larger value of AET is obtained are shown in the red area of the figures. The maxi-
mum and minimum AET values for the former case are 4.24 and 0.6, respectively,
at (a, 5) = (0.01,0.28) and (0.95, 1). The minimum AET value for the latter case is
0.52 at (a, ) = (1,0.66) and maximum of 2.52 at («, 8) = (0.03,0.69). For both
cases, the higher NAI values are observed at the lower left corner of the parameter
space where both o and 3 have lower values. However, their variation in the whole
parameter space is distinct, as can be seen from plots in Fig. 20. The NAI values in
Fig. 20(a) steadily decline as « increases, changing from red to green and finally
blue. The decline in NAI values becomes more apparent as 3 increases, with deep
blue shades dominating in the upper-right area. In contrast, the transition from high to
low values seems smoother in Fig. 20(b), with a steadier decline from bottom to top
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Fig. 13 Mandelbrot sets generated by the Das—Debata iteration with T' = F5, S = Fg, 8 = 0.01 and
different values of «

and left to right in the parameter space. For the first case, the largest Mandelbrot set
is generated at («, 8) = (0.01,0.01), where the NAI value is 0.85, and the smallest
at (o, 8) = (0.01, 1), where the NAI value is 0.06. The latter instance, on the other
hand, has a minimum NAIT value of 0.05 at («, 8) = (1,1) and a maximum of 0.852
at (a, ) = (0.01,0.01).

For the last example, we present the AET and NAI graphs for the Mandelbrot sets
that are generated by combining the 8th and 5th-degree polynomials F5 and Fj, as
well as by shifting their orderings in the Das—Debata iteration, in Figs. 21 and 22.
The higher values of the AET, which are represented by the red-shaded area in the
parameter space, are concentrated in the lower left corner at the lower values of the
parameters in both Figs. 21(a) and 21(b). For the former case, as «, (3 increase, the
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Fig. 14 Mandelbrot sets generated by the Das—Debata iteration with T' = Fg, S = Fs, 8 = 0.01 and
different values of «

AET values decrease, transitioning from yellow-green to deep blue in the upper-right
region. Also, a noticeable gradient exists along both axes, with a relatively sharp
transition from high to low values. The higher AET values are again found in the
bottom-left section of Fig. 21(b), but they are not as noticeable as they were in the
earlier case. Most parts of the plot are dominated by lower AET values, which are
represented by blue shades, and the shift from high to low values seems smoother.
The various color bar ranges in this figure show that the overall AET values are lower
than in the previous plot. For the first plot, the maximum AET value is 4.88, while
the lowest is 0.75 at («, 8) = (0.02,0.01) and (1, 1), respectively. The latter plot,
however, has the greatest and lowest AET values at («, 5) = (0.01,0.01) and (1, 1),
respectively, 6.39 and 0.75. In the case of NAI, both the plots in Fig. 22 show that
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Fig. 15 Mandelbrot sets generated by the Das—Debata iteration with " = F5, S = Fg, o = 0.01 and
different values of 3

the higher values represented by the red-shaded region in the parameter space are
achieved at the lower left corner. Regarding NAI, both plots in Fig. 22 demonstrate
that the lower left corner of the parameter space is where the higher values shown by
the red-shaded region are attained. According to Fig. 22(a), the NAI values progres-
sively drop as « increases, changing from red to green and finally blue. Deep blue
hues predominate in the top area, and the decline in NAI values becomes more appar-
ent as [ increases. In contrast to the first figure, the second scenario shows a more
gradual change from red to blue and a smoother transition from high to low values.
The second plot shows a more consistent gradient throughout the domain, but the
general pattern is still the same. The parameters («, 5) = (0.02,0.01) and (1, 1) yield
the greatest and smallest sets for the first case, respectively, with NAI values of 0.9

@ Springer



Numerical Algorithms

-0.75 0.00

(@) B=0.1 (b) =04

1.50

0.75

0.00

-0.75

18050 -075 0.00 : 50 %50 -075 0.00 : 150
(c) B=0.7 adp=1

Fig. 16 Mandelbrot sets generated by the Das—Debata iteration with 7" = Fg, S = F5, o = 0.01 and
different values of 3

and 0.004. The greatest and lowest NAI values for the latter case are 0.9 and 0.005 at
(o, 8) = (0.01,0.01) and (1, 1), respectively. According to both graphs, greater NAI
values are correlated with smaller « and 3, and these values fall as these parameters
increase. In contrast to the first plot, which exhibits greater fluctuations in some areas,
the second plot displays a transition that is more evenly distributed.
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Fig. 17 AET plots for Mandelbrot sets obtained using Das—Debata iteration with (a) T" = F1, S = Fa,
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Fig. 18 NAI plots for Mandelbrot sets obtained using Das—Debata iteration with (a) T" = F1, S = Fa,
OT=FRS=FR

6 Conclusions

This study presented an approach to generating Mandelbrot sets using the escape time
algorithm by iterating two distinct complex polynomial functions. We established
escape criteria for the Das—Debata iterative method involving two distinct polynomi-
als. Some interesting graphical representations of Mandelbrot sets are given, which
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Fig.20 NAI plots for Mandelbrot sets obtained using Das—Debata iteration with (a) T' = F3, S = Fy,
b)T = Fy,S=F3

reveal significant differences in their patterns when compared with the Mandelbrot
sets generated with the Picard iteration. It has also been found that if we change the
positions of the polynomials in the iteration process, the resultant Mandelbrot sets
can have a different structure with the same parameter values. This showcases the
utility of this method of merging multiple polynomials in a single iterative method
to generate different fractal patterns. The fractal patterns created by this approach
often has the influence of both the polynomials in their structures. For example, the
Mandelbrot sets obtained by merging 2nd and 4th-degree polynomials can produce
the classical Mandelbrot set as well as some other distinctive structures as we found
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Fig.21 AET plots for Mandelbrot sets obtained using Das—Debata iteration with (a) T" = F5, S = Fg,
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Fig.22 NAI plots for Mandelbrot sets obtained using Das—Debata iteration with (a) ' = F5, S = Fg,
O)T =Fs,S=F5

in the graphical examples. Furthermore, our analysis of the numerical measures AET
and NAI reveals a complex and nonlinear dependency on iteration parameters.

The concept of employing multiple operators in fixed-point iterations, which
has been extensively explored in the literature, constitutes a powerful and flexible
approach for fractal generation. This framework allows for the synthesis of complex
dynamical behaviors by alternating or combining different operators within iterative
schemes. Such an approach not only enriches the geometry of the resulting fractals
but also broadens the analytical tools available for their study.
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Future research may investigate the effects of alternative polynomial combinations,
including higher-degree or asymmetric polynomials, and their influence on the
stability and structure of the generated sets. Moreover, this methodology can be
extended to encompass other classes of functions, such as exponential, hyperbolic,
logarithmic, or trigonometric functions. These function classes, with their distinct
dynamical characteristics, could produce qualitatively different fractal structures and
may uncover new fixed-point behaviors or convergence patterns that are not apparent
in purely polynomial contexts.

An additional direction for exploration involves applying this multi-operator
iterative framework to the generation of Julia sets. Given the deep connections
between Julia and Mandelbrot sets the adaptation of multi-function iterations to
Julia set construction could provide further insight into their bifurcation landscapes
and connectivity properties. Investigating how the interaction of multiple operators
affects the local and global features of Julia sets could be particularly fruitful.

Furthermore, extending this methodology beyond the conventional complex plane
to more generalized number systems offers another promising research direction. For
example, using trinion numbers [5] or quaternion numbers [12] in place of complex
numbers introduces higher-dimensional dynamics into the iteration process. These
generalized algebras allow for the construction of fractal sets in three or four dimensions,
opening new possibilities for visualization, analysis, and potential applications in fields
such as physics, signal processing, and computer graphics. The extension of fixed-
point iteration theory to these non-commutative or non-associative number systems
poses significant mathematical challenges, but also presents an opportunity to deepen
our understanding of fractal geometry in higher-dimensional spaces.
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