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Abstract
In this manuscript, we introduce a novel hybrid iteration process called the Picard–SP
iteration process. We apply this new iteration process to approximate fixed points of
generalized α–nonexpansive mappings. Convergence analysis of our newly proposed
iteration process is discussed in the setting of uniformly convex Banach spaces and
results are correlated with some other existing iteration processes. The dominance of
the newly proposed iteration process is exhibited with the help of a new numerical
example. In the end, the comparison of polynomiographs generated by other well-
known iteration processes with our proposed iteration process has been presented to
make a strong impression of our proposed iteration process.

Keywords Generalized α-nonexpansive mapping · Fixed point · Iteration scheme ·
Polynomiography

1 Introduction and preliminaries

Banach [4] outlined a very basic idea of contraction mapping and proved the well-
known Banach contraction principle (BCP). This result is the basis of fixed point
theory, which guarantees not only the fixed point of contraction mapping but also the
uniqueness of the fixed point. Browder [7], Gohde [13], and Kirk [19] extended the
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idea of Banach and introduced new research dimensions in the field of fixed point
theory.

Definition 1 LetU be a nonempty subset of a Banach space X . Amapping S : U → U
is called contraction if for all p, z ∈ U , there exists ϑ ∈ [0, 1) such that:

||Sp − Sz|| ≤ ϑ ||p − z||. (1)

For ϑ = 1, (1) is termed as nonexpansive mapping. The point satisfying St = t
for any arbitrary t ∈ U is known as a fixed point of mapping S. In this paper, Fix(S)

will represent the set of all fixed points of the mapping S.

With the passage of time, efforts have been made to introduce mappings weaker
than contractionmapping. Zamfirescu [37] introducedZamfirescumappings that serve
as an important generalization for BCP. In [5], Berinde gave a more general class of
mappings known as quasi-contractive mappings. Following this, Imoru and Olantiwo
[15] gave the following definition.

Definition 2 An operator S is called a contractive-like operator if for each p, z ∈ U ,
there exists a constant ϑ ∈ [0, 1) and strictly increasing and continuous function
ξ : [0,∞) → [0,∞) with ξ(0) = 0 such that

‖Sp − Sz‖ ≤ ξ(‖p − Sp‖) + ϑ‖p − z‖. (2)

In [33], Suzuki introduced a new class of maps with weaker condition than nonex-
pnasive maps and named that as Condition (C).

Definition 3 Amapping S : U → U is said to be a mapping satisfying Condition (C)

if
1

2
‖p − Sp‖ ≤ ‖p − z‖ ⇒ ‖Sp − Sz‖ ≤ ‖p − z‖, ∀ p, z ∈ U . (3)

In [3], Ayoama and Kahsoka suggested another generalization of contraction, that
is α–nonexpansive mapping.

Definition 4 A mapping S : U → U is called α–nonexpansive mapping if for each
p, z ∈ U , there exists α < 1 such that

||Sp − Sz||2 ≤ α||p − Sz||2 + α||z − Sp||2 + (1 − 2α)||p − z||2. (4)

In [26], Pant and Shukla proposed the notion of generalized α–nonexpansive map-
ping.

Definition 5 Mapping S : U → U is called generalized α–nonexpansive mapping if
for each p, z ∈ U , there exist α ∈ [0, 1) such that

1

2
||p− Sp|| ≤ ||p−z|| ⇒ ||Sp− Sz|| ≤ α||p− Sz||+α||z− Sp||+(1−2α)||p−z||.

(5)
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Proposition 1 [26] Let U be a closed and nonempty subset of a Banach space X, then
following results hold for any selfmap S on U:

(i) If S satisfies Condition (C), then S is generalized α–nonexpansive, but the con-
verse is not true.

(ii) If Fi x(S) 	= ∅ and S is generalized α–nonexpansive, then

||Sp − t || ≤ ||p − t ||, for p ∈ U , t ∈ Fix(S).

(iii) If the Banach space X is strictly convex, U ⊆ X is convex and S is generalized
α–nonexpansive, then Fix(S) is closed and convex.

(iv) If S is generalized α–nonexpansive, then

||p − Sz|| ≤
(
3 + α

1 − α

)
||p − Sp|| + ||p − z||, ∀p, z ∈ U .

(v) Let U ⊆ X be equipped with Opial’s property and S is generalized α–
nonexpansive mapping. If {mi } converges weakly to t and lim

i→∞ ‖Smi −mi‖ = 0,

then St = t .

Definition 6 ([12]) A space X is termed as uniformly convex Banach space (UCBS)
if for each ς ∈ (0, 2] there exist � > 0 such that for p, z ∈ X ,

‖p‖ ≤ 1
‖z‖ ≤ 1

‖p − z‖ > ς

⎫⎬
⎭ ⇒

∥∥∥∥ p − z

2

∥∥∥∥ ≤ �. (6)

Definition 7 ([12]) The modulus of convexity of a Banach space X is the function
ςX : [0, 2] → [0, 1] defined by

ςX (�) = inf

{
1 −

∥∥∥∥ p + z

2

∥∥∥∥ : ‖p‖ ≤ 1, ‖z‖ ≤ 1, ‖p − z‖ ≥ �
}

.

Definition 8 Let {mi } be a bounded sequence in a Banach space X . If ∅ 	= U ⊆ X
is convex and closed, then the asymptotic radius of {mi } corresponding to U can be
described as

r(U , {mi }) = inf{lim sup
i→∞

||mi − p|| : p ∈ U }.

Similarly, the asymptotic center of the sequence {mi } corresponding toU is explained
by the formula

A (U , {mi }) = {p ∈ U : lim sup
i→∞

||mi − p|| = r(U , {mi })}.

Remark 1 [8] If X denotes a UCBS, then it is well-known that A (U , {mi }) contains
only one element. Also note that when U is convex as well as weakly compact then
A (U , {mi }) is convex space (see, e.g. [29, 34] and others).
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Definition 9 [24] Let X be a Banach space. Then, for every sequence {mi } in X that
converges weakly to z ∈ X , the following inequality is satisfied:

lim
i→∞ sup ||mi − z|| < lim

i→∞ sup ||mi − ỹ||, ∀ ỹ ∈ P, where z 	= ỹ.

Definition 10 [32] A self mapping S defined on a subsetU ⊆ X is equippedwith Con-
dition (I ) if there exists a function g : [0,∞) → [0,∞) such that g is non-decreasing
with g(0) = 0, g(x) > 0 for every x > 0 and ||q − Sq|| ≥ g(d(q, Fix(S))), for each
q ∈ U , where d(q, Fix(S)) = inf t∈Fix(S) ‖q − t‖.

Definition 11 [6] Let {gi } and {fi } be real convergent sequences with limits g and f,
respectively. If lim

i→∞ |gi−g
fi−f | = 0, then {gi } is said to converge faster than {fi }.

Lemma 1 [31] Let {mi } be any real sequence such that 0 < j ≤ mi ≤ k < 1, for
every choice of i ≥ 1. If {xi } and {yi } are any two sequences in a UCBS X with
lim
i→∞ sup ‖xi‖ ≤ r and lim

i→∞ sup ‖yi‖ ≤ r , lim
i→∞ sup ‖(1−mi )xi +mi yi‖ = r for a real

number r ≥ 0, then lim
i→∞ ‖xi − yi‖ = 0.

Numerical computation of nonlinear operator is very famous and important research
area for modern day researcher. Fixed point approximation of nonlinear operators
required pre-eminent approach. Initially, Picard [28] iteration process was used along
with BCP for fixed point approximation of mappings satisfying contraction condition
but in general Picard iteration process is not effective in the case of nonexpansive
mappings. To cope this issue, different single step and two step iteration processes,
see for example [1, 2, 16, 22], have been introduced in the literature for fixed point
estimation of nonexpansive (also generalized nonexpansive) mappings.

Picard [28], gave the idea of the Picard iteration process,which generates a sequence
{mi } for initial value m0 ∈ U , defined as

mi+1 = Smi . (7)

Let {ψi } , {μi } , {ξi } denote real sequences in (0, 1]. In [23], Noor introduced first
three-step iteration process, the Noor iteration process, which generates the sequence
{mi } given as: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

m0 ∈ U ,

wi = (1 − ξi )mi + ξi Smi ,

vi = (1 − μi )mi + μi Swi ,

mi+1 = (1 − ψi )mi + ψi Svi .

(8)
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In 2011, Phuentgrattana and Sunatai (see [27]) introduced three step iteration process,
the SP iteration process, which generates the sequence {mi } defined as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m0 ∈ U ,

wi = (1 − ξi )mi + ξi Smi ,

vi = (1 − μi )wi + μi Swi ,

mi+1 = (1 − ψi )vi + ψi Svi .

(9)

In 2011, Sunatai (see [30]) introduced a three-step iteration process, denoted as P
iteration process, which generates the sequence {mi } as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m0 ∈ U ,

wi = (1 − ξi )mi + ξi Smi ,

vi = (1 − μi )wi + μi Swi ,

mi+1 = (1 − ψi )Smi + ψi Svi .

(10)

In 2018, Daengsaen and Khempet (see [9]) suggested new three-step iteration process
called D iteration process, which generates the sequence {mi } given as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m0 ∈ U ,

wi = (1 − ξi )mi + ξi Smi ,

vi = (1 − μi )Smi + μi Swi ,

mi+1 = (1 − ψi )Swi + ψi Svi .

(11)

In 2019, Kanayo Stella and Husdson (see [10]) gave the idea of four-step iteration
process called Picard–Noor iteration process, which generates the sequence {mi } given
as: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m0 ∈ U ,

wi = (1 − ξi )mi + ξi Smi ,

vi = (1 − μi )mi + μi Swi ,

li = (1 − ψi )mi + ψi Svi ,

mi+1 = Sli .

(12)

In 2021, Lamba and Panwar (see [21]) suggested four-step iteration process called
Picard–S∗ iteration process, which generates the sequence {mi } defined as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m0 ∈ U ,

wi = (1 − ξi )mi + ξi Smi ,

vi = (1 − μi )Smi + μi Swi ,

li = (1 − ψi )Smi + ψi Svi ,

mi+1 = Sli .

(13)
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2 Main results

Gradually improvements in iterations is based on better convergence results. We have
observed that hybrid models of any iteration process significantly generate improved
convergent result as compared to that iteration process. This versatility of fixed point
theory field has strongly inspired us to introduce new hybrid iteration process.We have
proposed a new iteration process called Picard–SP iteration process, which generates
the sequence {mi } defined as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m0 ∈ U ,

ai = (1 − ξi )mi + ξi Smi ,

bi = (1 − μi )ai + μi Sai ,

ci = (1 − ψi )bi + ψi Sbi ,

mi+1 = Sci .

(14)

where {ψi } , {μi } , {ξi } are sequences in (0, 1] for i ∈ N.
We first prove a fundamental lemma using our new iteration process before estab-

lishing the main results.

Lemma 2 Let X be any UCBS and ∅ 	= U ⊆ X be closed and convex. If a selfmap
S : U → U is generalized α–nonexpansive mapping with Fix(S) 	= ∅ and {mi } is a
sequence generated by the Picard–SP iteration process (14), then for all t ∈ Fix(S),
the limit lim

i→∞ ||mi − t || exists.

Proof We may choose any t ∈ Fix(S). Using (14) with Proposition 1 (ii), we get

||ai − t || = ||(1 − ξi )mi + ξi Smi − t ||
≤ (1 − ξi )||mi − t || + ξi ||Smi − t ||
≤ (1 − ξi )||mi − t || + ξi ||mi − t ||
= ||mi − t ||.

(15)

Similarly, we can prove that

||bi − t || ≤ ||ai − t ||, (16)

and,
||ci − t || ≤ ||bi − t ||. (17)

Also,
||mi+1 − t || = ||Sci − t || ≤ ||ci − t ||. (18)

Using (15), (16), (17) in (18), we obtain

||mi+1 − t || ≤ ||ci − t || ≤ ||bi − t || ≤ ||ai − t || ≤ ||mi − t ||. (19)
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We can conclude that ||mi+1 − t || ≤ ||mi − t ||, i.e {||mi − t ||} is nonincreasing
and bounded. This implies that lim

i→∞ ||mi − t || exists for each t ∈ Fix(S). ��

Now, we explain important condition for fixed point existence of generalized α–
nonexpansive mappings.

Theorem 1 Assume that S is a generalized α–nonexpansive mapping defined on a
nonempty closed subset U of a UCBS X, and let {mi } be a sequence generated by
(14), then

Fix(S) 	= ∅ ⇐⇒ {mi } is bounded and lim
i→∞ ||Smi − mi || = 0. (20)

Proof Assume that Fix(S) is not empty, and let t ∈ Fix(S).
Lemma 2 assures that lim

i→∞ ||mi − t || exists as well as {mi } is bounded. Now, we
will prove that lim

i→∞ ||Smi − mi || = 0. For this, suppose that

lim
i→∞ ||mi − t || = ε. (21)

From Lemma 2, we have

||ai − t || ≤ ||mi − t ||,
lim sup
i→∞

||ai − t || ≤ lim sup
i→∞

||mi − t || = ε. (22)

Since t ∈ Fix(S), therefore using Proposition 1(ii), we get

||Smi − t || ≤ ||mi − t ||,
lim sup
i→∞

||Smi − t || ≤ lim sup
i→∞

||mi − t || = ε. (23)

Again using Lemma 2, we get

||mi+1 − t || ≤ ||ai − t ||. (24)

Using (21) with (22), we get

ε ≤ lim inf
i→∞ ||ai − t ||. (25)

From (25) and (22), we obtain

lim
i→∞ ||ai − t || = ε. (26)

From Lemma 2, we have

‖ai − t‖ = ‖ξi (Smi − t) + (1 − ξi )(mi − t)‖,
lim
i→∞ ‖ai − t‖ = lim

i→∞ ‖ξi (Smi − t) + (1 − ξi )(mi − t)‖. (27)
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Using (26) with (27), we get

ε = lim
i→∞ ‖ξi (Smi − t) + (1 − ξi )(mi − t)‖. (28)

Using Lemma 1 with (21), (23), and (28), we get

lim
i→∞ ||Smi − mi || = 0.

Now, conversely assume that {mi } is bounded such that lim
i→∞ ||Smi −mi || = 0. Let

t ∈ A (U , {mi }) and apply Proposition 1(iv). Then, we obtain the following

lim sup
i→∞

||mi − St || ≤
(
3 + α

1 − α

)
lim sup
i→∞

||mi − Smi || + lim sup
i→∞

||mi − t ||
= lim sup

i→∞
||mi − t ||

= r(U , {mi }) as t ∈ A(U , {mi }).

This implies that St ∈ A (U , {mi }). As X is a UCBS, so A(U , {mi }) will consist of
single element, it further implies that the set Fix(S) is nonempty. ��

The following theorem elaborates the weak convergence of our newly proposed
iteration process.

Theorem 2 Assume that S is generalized α–nonexpansive mapping defined on a
nonempty closed subset U of a UCBS X, and let {mi } be a sequence generated by
(14). If X is equipped with Opial property and Fix(S) is nonempty, then {mi } exhibits
weak convergence to a fixed point of S.

Proof Given that Fix(S) 	= ∅, so using Theorem 1, we conclude that {mi } is bounded
and lim

i→∞ ||mi−Smi || = 0 . It is also given in the theorem statement that X is uniformly

convex, therefore X is reflexive. So by Eberlin’s theorem one can build a subsequence
{ςi j } of sequence of {mi } which weakly converges to q1 ∈ X . As U is closed and
convex, so Mazur’s theorem implies that q1 ∈ U . From Proposition 1(v), we get
q1 ∈ Fix(S).

Now,weneed to prove that {mi } exhibitweak convergence toq1. Let us suppose that,
it is not true, i.e. {mi } fails to converge weakly to q1. Then, there exists a subsequence
{ϕik } of {mi } such that {ϕik } weakly converges to q2 ∈ U and q2 	= q1. Again, by
using Proposition 1(v), we obtain q2 ∈ Fix(S). Now, by using Opial property with
Lemma 2, we get

lim
i→∞ ||mi − q1|| = lim

j→∞ ||ςi j − q1|| < lim
j→∞ ||ςi j − q2||

= lim
i→∞ ||mi − q2|| = lim

k→∞ ||ϕik − q2||
< lim

k→∞ ||ϕik − q1|| = lim
i→∞ ||mi − q1||.
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Which is not possible, therefore q1 = q2. Hence, {mi } exhibit weak convergence to
q1 ∈ Fix(S). ��

Now, we prove strong convergence theorem for Picard–SP iteration process.

Theorem 3 Assume that S is generalized α–nonexpansive mapping defined on a
nonempty closed and compact subset U of a UCBS X, and let {mi } be a sequence
generated by (14). Then, {mi } exhibits strong convergence to a fixed point of S.

Proof U ⊆ X being a compact and closed and {mi } ⊆ U , then there exists a sub-
sequence {xnk } of {mi } such that {xnk } strongly converges to t for some t ∈ U . By
applying Proposition 1(iv), we get

||xnk − St || ≤
(
3 + α

1 − α

)
||xnk − Sxnk || + ||xnk − t ||.

If we let k → ∞, then St = t which means t ∈ Fix(S). Since by Lemma 2,
limi→∞ ||mi − t || exists for every t ∈ Fix(S), so {mi } converges strongly to t . ��

Now, we use Condition (I ) and prove strong convergence for Picard–SP iteration
process.

Theorem 4 Assume that S is generalized α–nonexpansive mapping defined on a
nonempty closed subset U of UCBS X, and {mi } be a sequence generated by (14). If
Fi x(S) 	= ∅ and S satisfies Condition (I ), then {mi } exhibits strong convergence to a
fixed point of S.

Proof From Lemma 2, we get that lim
i→∞ ||mi − t || exists for all t ∈ Fix(S). Therefore,

lim
i→∞ d(mi , Fix(S)) exists. Suppose that lim

i→∞ ||mi − t || = ℘ for some ℘ ≥ 0. For

℘ = 0, the result is obviously true. Now, if ℘ > 0, then from the assumption and
Condition (I ), we have

g(d(mi , Fix(S))) ≤ ||mi − Smi ||. (29)

From Theorem 1, we get
lim
i→∞ ||mi − Smi || = 0. (30)

Since g is non-decreasing function, so by using (30) with (29), we obtain

lim
i→∞ g(d(mi , Fix(S))) = 0.

From the above, we get two subsequences {ξiu } of {mi } and {ηu} ⊂ Fix(S) such
that

||ξiu − ηu || ≤ 1

2u
, ∀ u ∈ N.

Using Lemma 2, we obtain

||ξiu+1 − ηu || ≤ ||ξiu − ηu || ≤ 1

2u
.
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Hence,

||ηu+1 − ηu || ≤ ||ηu+1 − ξiu+1 || + ||ξiu+1 − ηu ||
≤ 1

2u+1 + 1

2u
→ 0, as u → ∞.

Which implies that {ηu} is Cauchy sequence in Fix(S) and so it converges to t . As
Fix(S) is closed, so t ∈ Fix(S) and then {ξiu } converges strongly to t . Since by
Lemma 2, lim

i→∞ ||mi − t || exists, we have mi → t ∈ Fix(S). ��

3 Comparison

Picard–SP iteration process indubitably exhibits a faster convergence rate as compared
to other iterations in connection with generalized α–nonexpansive mapping. Obser-
vations are explained theoretically and also with the help of a numerical example.

Theorem 5 Assume that X is any Banach space, and ∅ 	= U ⊆ X is convex and
closed. If a self mapping S defined on U is satisfying (1), and {mi } is a sequence
generated by (14), and {ui } is a sequence generated by (9), where {ψi } , {μi }, {ξi } are
sequences in (0, 1] such that

∑∞
i=1 ψi = ∞, then {mi } converges faster than {ui } to

a fixed point of S.

Proof As X is complete and S satisfies (1), so by BCP, S has a unique fixed point in
X , say t . Moreover, it is easy to prove that mi → t and ui → t as i → ∞. Now, by
using (14) along with (1), we get

||ai − t || = ||(1 − ξi )mi + ξi Smi − t ||
≤ (1 − ξi )||mi − t || + ξi ||Smi − t ||
= (1 − ξi )||mi − t || + ξi ||Smi − St ||
≤ (1 − ξi )||mi − t || + ξi .ϑ‖mi − t‖
= (1 − ξi (1 − ϑ))||mi − t ||.

(31)

Similarly,

||bi − t || = ||(1 − μi )ai + μi Sai − t ||
≤ (1 − μi )||ai − t || + μi ||Sai − t ||
≤ (1 − μi )||ai − t || + μiϑ ||ai − t ||
= (1 − μi (1 − ϑ))||ai − t ||.

(32)

Using (31) in (32), we get

||bi − t || ≤ (1 − μi (1 − ϑ))((1 − ξi (1 − ϑ))||mi − t ||.
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Since 0 ≤ ϑ < 1, therefore 1 − ϑ < 1 and ξi ∈ [0, 1] implies 0 ≤ ξi (1 − ϑ) < 1.
Hence, 1 − ξi (1 − ϑ) < 1, and

||bi − t || ≤ (1 − μi (1 − ϑ))||mi − t ||. (33)

Using a similar argument, we get

||ci − t || ≤ (1 − ψi (1 − ϑ))||bi − t ||. (34)

Using (33) in (34), we obtain

||ci − t || ≤ (1 − ψi (1 − ϑ))((1 − μi (1 − ϑ))||mi − t ||
≤ (1 − ψi (1 − ϑ))||mi − t ||. (35)

And,
||mi+1 − t || = ||Sci − t || ≤ ϑ ||ci − t ||. (36)

Using (35) in (36), we get

||mi+1 − t || ≤ ϑ(1 − ψi (1 − ϑ))||mi − t ||
≤ ϑ2(1 − ψi (1 − ϑ))(1 − ψi−1(1 − ϑ))||mi−1 − t ||.

Continuing the same way, we get

||mi+1 − t || ≤ ||m0 − t ||ϑ i+1
i∏

k=0

(1 − ψk(1 − ϑ)). (37)

Now, for the sequence {ui } generated by (9), we have the following

||wi − t || = ||(1 − ξi )ui + ξi Sui − t ||
≤ (1 − ξi )||ui − t || + ξi ||Sui − t ||
≤ (1 − ξi )||ui − t || + ξi .ϑ‖ui − t‖
= (1 − ξi )||ui − t || + ξiϑ‖ui − t‖
= ((1 − ξi (1 − ϑ))||ui − t ||.

(38)

Similarly,
||vi − t || ≤ (1 − μi (1 − ϑ)||wi − t ||. (39)

Using (38) in (39), we get

||vi − t || ≤ (1 − μi (1 − ϑ))((1 − ξi (1 − ϑ))||ui − t ||
≤ (1 − μi (1 − ϑ))||ui − t ||.
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Using a similar argument, we obtain

||ui+1 − t || ≤ (1 − ψi (1 − ϑ))||vi − t ||. (40)

Using (39) in (40), we obtain

||ui+1 − t || ≤ (1 − ψi (1 − ϑ))((1 − μi (1 − ϑ))||ui − t ||
≤ (1 − ψi (1 − ϑ))||ui − t ||
≤ (1 − ψi (1 − ϑ))(1 − ψi−1(1 − ϑ))||ui−1 − t ||

(41)

Continuing the same way, we get

||ui+1 − t || ≤ ||u0 − t ||
i∏

k=0

(1 − ψk(1 − ϑ)). (42)

Let

ai = ϑ i+1
i∏

k=0

(1 − ψk(1 − ϑ)),

bi =
i∏

k=0

(1 − ψk(1 − ϑ)),

and define ci = ai
bi
.

Now,

ci+1

ci
= ϑ i+2 ∏i+1

k=0(1 − ψk(1 − ϑ))∏i+1
k=0(1 − ψk(1 − ϑ))

·
∏i

k=0(1 − ψk(1 − ϑ))

ϑ i+1
∏i

k=0(1 − ψk(1 − ϑ))

= ϑ < 1 ∵ ϑ ∈ [0, 1).

So, by Ratio test (i.e., suppose for any series
∑∞

i=1 xi , if lim
i→∞

xi+1
xi

< 1, then
∑∞

i=1 xi

exists), we can conclude that
∑∞

i=1 ci exists. Moreover,

lim
i→∞ ci = 0 ⇒ lim

i→∞
ai
bi

= 0. (43)

Using (43) with Definition 11, we can conclude that {mi } converges faster than {ui }
to the fixed point t of S. ��

In order to demonstrate the improved performance of the proposed Picard–SP iter-
ation process, we consider a numerical example in which we compare our method
with the Noor (8), SP (9), P (10), D (11), Picard–Noor (12) and Picard–S∗ (13) and
iteration processes.
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Example 1 Let X = R be a Banach space and U = [0, 7] is a subset of X equipped
with the norm ||p|| = |p|. Define a function S : U → U as

Sp =
{

p+24
5 , if p ∈ [0, 6],

5, if p ∈ (6, 7]. (44)

S is generalized α–nonexpansive but does not satisfy Condition (C).
Firstly, we show that S does not satisfy Condition (C). For p = 29

5 and z = 31
5 , we

have

Sp = 149

25
,

Sz = 5,

‖p − z‖ =
∣∣∣∣295 − 31

5

∣∣∣∣ = 2

5
.

Now,

1

2
‖p − Sp‖ = 1

2

∣∣∣∣295 − 149

25

∣∣∣∣ = 2

25
<

2

5
= ‖p − z‖.

Then,

‖Sp − Sz‖ =
∣∣∣∣14925 − 5

∣∣∣∣ = 24

25
>

2

5
= ‖p − z‖.

Therefore, S fails to satisfy Condition (C).
Next, we show that S is generalized α–nonexapnsive mapping. Choose α = 1

2 . Let
us consider cases:

1. p, z ∈ [0, 6]. Then,

‖Sp − Sz‖ =
∣∣∣∣ p + 24

5
− z + 24

5

∣∣∣∣ = 1

5
‖p − z‖.

Now,

α‖p−Sz‖+α‖z − Sp‖+(1 − 2α)‖p − z‖= 1

2

∣∣∣∣p − z + 24

5

∣∣∣∣ + 1

2

∣∣∣∣z − p + 24

5

∣∣∣∣
≥ 1

2

∣∣∣∣5p − z − 24

5
+ 5z − p − 24

5

∣∣∣∣ = 1

2

∣∣∣∣4p + 4z − 48

5

∣∣∣∣
≥ 1

5
‖p − z‖ = ‖Sp − Sz‖.

Thus, (5) is satisfied.
2. p, z ∈ (6, 7]. Then,

‖Sp − Sz‖ = |1 − 1| = 0.
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Now,

α‖p − Sz‖ + α‖z − Sp‖ + (1 − 2α)‖p − z‖ = 1

5
|p − 5| + 1

5
|z − 5|

+
(
1 − 2 · 1

5

)
‖p − z‖ ≥ ‖Sp − Sz‖.

Thus, (5) is satisfied.
3. p ∈ [0, 6] and z ∈ (6, 7]. Then,

‖Sp − Sz‖ =
∣∣∣∣ p + 24

5
− 5

∣∣∣∣ = 1

5
|p − 1|.

Now,

α‖p − Sz‖ + α‖z − Sp‖ + (1 − 2α)‖p − z‖ = 1

2
|p − 5| + 1

2

∣∣∣∣z − p + 24

5

∣∣∣∣
+

(
1 − 2 · 1

2

)
‖p − z‖ = 1

2
|p − 5| + 1

2

∣∣∣∣5z − p − 24

5

∣∣∣∣
≥ 1

2

∣∣∣∣4p + 5z − 49

5

∣∣∣∣ ≥ 1

5
|p − 1| = ‖Sp − Sz‖.

Thus, (5) is satisfied.

Hence, we conclude that S given in (44) is generalized 1
2–nonexpansive mapping.

In the numerical example, we set ψi = 0.75, μi = 0.85, ξi = 0.80, and the
initial value m0 = 2 for all the considered iteration schemes, i.e., the Picard–SP,
Noor, SP, P, D, Picard–S∗, and Picard–Noor iterations. We set the stopping criterion
||mi − mi+1|| < 10−8. The obtained results are presented in Table 1 and Figs. 1 and 2.

From the obtained results, we see that after the first iteration, the value calculated
using the Picard–SP (5.96313600) is closer to the fixed point (i.e., 6) as compared to
the first iteration of the other iterative processes. The closest fixed point approximation
among the methods from the literature can be observed for the Picard–S∗ iteration.
In the subsequent iterations, we see that each iteration scheme gets closer to the fixed
point but with various speeds. The fastest method is the proposed Picard–SP iteration,
which found the fixed point in 4 iterations. The second best method is the Picard–S∗
iteration, which needed 5 iterations. For the D and SP iterations, we observe a very
similar behavior. We can also notice a similar behavior for the Picard–Noor and P
iteration processes (their plots are very close to each other). The worst convergence
speed is observed for the Noor iteration, which needed 15 iterations to find the fixed
point.
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Table 1 Iterates mi generated by various iteration processes for the mapping S considered in Example 1,
and the starting point m0 = 2

i Picard–SP Picard–S∗ SP D Picard–Noor P Noor
iteration iteration iteration iteration iteration iteration iteration

0 2 2 2 2 2 2 2

1 5.96313600 5.94905600 5.81568000 5.87328000 5.77465600 5.73088000 4.87328000

2 5.99966030 5.99935120 5.99150650 5.99598551 5.98730500 5.98189361 5.68262551

3 5.99999686 5.99999170 5.99960860 5.99987282 5.99928480 5.99878180 5.91060195

4 6 5.99999989 5.99998200 5.99999597 5.99995970 5.99991804 5.97481836

5 6 6 5.99999916 5.99999987 5.99999770 5.99999448 5.99290684

6 6 6 6 6 5.99999987 5.99999962 5.99800200

7 6 6 6 6 6 6 5.99943720

8 6 6 6 6 6 6 5.99984147

9 6 6 6 6 6 6 5.99995534

10 6 6 6 6 6 6 5.99998742

11 6 6 6 6 6 6 5.99999646

12 6 6 6 6 6 6 5.99999900

13 6 6 6 6 6 6 5.99999972

14 6 6 6 6 6 6 5.99999992

15 6 6 6 6 6 6 6

0

0 0 0 0 0 0 0 0 0

0

0

0 0 0 0 0 0 0 0 0

0

0

0 0 0 0 0 0 0 0

0

0
0 0 0 0

0

0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0

0

0

0
0 0 0 0 0 0 0 0 0 0

0 5 10 15

5.88

5.90

5.92

5.94

5.96

5.98

6.00

Number of iterations

Va
lu
es

of
se

qu
en

ce
s Picard SP iteration

Picard
SP iteration
D iteration
Picard Noor iteration
P iteration
Noor iteration

Fig. 1 Convergence behavior of Picard–SP (14), Noor (8), SP (9), P (10), D (11), Picard–S∗ (13) and
Picard–Noor (12) iteration processes corresponding to Table 1
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Fig. 2 Convergence analysis of Picard–SP (14), Noor (8), SP (9), P (10), D (11), Picard–S∗ (13) and
Picard–Noor (12) iteration processes with respect to the values given in Table 1

4 Comparison via polynomiography

In this section, we present an empirical comparison of the Picard–SP iteration process
with the Noor, SP, P, D, Picard–S∗ and Picard–Noor iteration processes for fixed points
approximation of Newton’s iteration operator via the so-called polynomiography. The
term polynomiography was introduced by Kalantari in [17], and it is defined as “the
art and science of visualization in approximation of the zeros of complex polynomials,
via fractal and non-fractal images created using the mathematical convergence prop-
erties of iteration functions”. An image generated with polynomiography is called a
polynomiograph. The methods of polynomiography are widely used in the compari-
son and analysis of various kinds of iteration processes, see for example [14, 20, 25,
35, 36]. Polynomiographs can also produce artistic patterns [11].

The famous Newton’s method [18] for a complex polynomial Q is defined as

pn+1 = pn − Q(pn)

Q′(pn)
, (45)

where p0 ∈ C is a starting point. Newton’s iteration process can be expressed in the
form of a fixed point iterative process as follows:

pn+1 = S(pn), (46)
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where S(p) = p−Q(p)/Q′(p).We see that (46) is the Picard iteration. If the iteration
process converges to a fixed point z ∈ C of S, then

z = S(z) = z − Q(z)

Q′(z)
. (47)

Thus, z is a root of Q because Q(z)/Q′(z) = 0 ⇐⇒ Q(z) = 0.
Now, instead of the Picard iteration, we can use other iteration processes, e.g., the

introduced Picard–SP iteration or other iteration processes defined in Sec. 1.
To generate polynomiographs, we use the algorithm presented as a pseudocode in

Algorithm1. In the algorithm,we use the so-called iteration coloring to color the points
[18]. In this type of coloring, for each starting point, we assign color according to the
number of performed iterations, which can be interpreted as the speed of convergence.
Therefore, this type of polynomiograph presents the speed of convergence of the root-
finding method. Moreover, using the polynomiograph generated using Algorithm 1,
we can calculate an average number of iterations (ANI) [11].

Algorithm 1 Generation of a polynomiograpgh.
Input: Q ∈ C[Z ], deg Q ≥ 2 – polynomial; I – iteration process; A ⊂ C – area; N – the maximum

number of iterations; ε – accuracy; colors – color map.
Output: Polynomiograph for the complex-valued polynomial Q within the area A.

1 for z0 ∈ A do
2 n = 0
3 while |Q(zn)| > ε and n < N do
4 zn+1 = I (zn , Q)

5 n = n + 1

6 Map n to a color from the color map colors and color z0

In the considered example, we generate polynomiographs for a cubic polynomial
Q(z) = z3 − 1 and various iteration processes, namely the introduced Picard–SP
iteration and the Noor, SP, P, D, Picard–Noor, and Picard–S∗ iterations known in the
literature. The polynomiographs were generated for three different settings of values
of the iterations’ parameters: (1) ξi = 0.01, μi = 0.01, ψi = 0.01, (2) ξi = 0.5,
μi = 0.5, ψi = 0.5, (3) ξi = 0.8, μi = 0.8, ψi = 0.8. All the other parameters
needed to generate the polynomiographs were common: A = [−2, 2]2, N = 15,
ε = 0.001 and the color map presented in Fig. 3.

The generated polynomiographs for the three settings of the parameters are
presented in Figs. 4, 5, and 6, whereas the ANI values calculated from the poly-
nomiographs are gathered in Table 2. For low values of the parameters (Fig. 4), we

Fig. 3 Color map used in the examples
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(a) Picard–SP (b) SP (c) Picard–Noor (d) Noor

(e) P (f) D (g) Picard–S

Fig. 4 Polynomiographs generated by various iteration processeswith the parameters ξi = 0.01,μi = 0.01,
ψi = 0.01

see that two of the iterations have not converged to any of the three roots of Q, i.e., we
see a uniform yellow color, which corresponds to the maximal of 15 iterations. For the
other iterations, we see a different speed of convergence. Based on the visual analysis,
we can observe that the fastest speed of convergence is obtained by the Picard–S∗,
followed by the proposed Picard–SP iteration and the D and P iterations. These obser-
vations are confirmed by the ANI values in Table 2. The lowest ANI value 1.165 is

(a) Picard–SP (b) SP (c) Picard–Noor (d) Noor

(e) P (f) D (g) Picard–S

Fig. 5 Polynomiographs generated by various iteration processes with the parameters ξi = 0.5, μi = 0.5,
ψi = 0.5
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(a) Picard–SP (b) SP (c) Picard–Noor (d) Noor

(e) P (f) D (g) Picard–S

Fig. 6 Polynomiographs generated by various iteration processes with the parameters ξi = 0.8, μi = 0.8,
ψi = 0.8

obtained by the Picard–S∗ iteration, followed by the Picard–SP (5.502), D (5.659) and
P (5.966) iterations. Moreover, we can observe that the addition of the Picard step in
the SP and Noor iterations significantly improves the speed of convergence.

For polynomiographs for the second parameters setting presented in Fig. 5, we
see that the slowest speed of convergence is obtained by the Noor iteration. The
polynomiograph contains yellowish colors, indicating a high number of performed
iterations. When we look at the polynomiograph for the SP iteration, we see a much
faster speed of convergence in comparison to the Noor iteration. The fastest among the
analyzed iterations is the Picard–SP iteration. In the polynomiographs, we can observe
more darker blue colors than in the case of the other iteration processes, which shows
a smaller number of performed iterations. The ANI values confirm this observation
because the lowest value equal to 2.503 is obtained by the Picard–SP iteration. The
second best iteration, in terms of speed of convergence, is the Picard–S∗ iteration

Table 2 ANI values calculated from polynomiographs presented in Figs. 4–6

Iteration ξi = μi = ψi = 0.01 ξi = μi = ψi = 0.5 ξi = μi = ψi = 0.8

Picard–SP 5.502 2.503 2.053

SP 15 4.967 3.027

Picard–Noor 5.795 3.378 2.525

Noor 15 12.211 5.791

P 5.966 4.066 3.268

D 5.659 3.280 2.631

Picard–S∗ 1.165 2.520 2.255

123



1962 Numerical Algorithms (2025) 98:1943–1964

(2.520), and the third best is the D iteration (3.280). The highest value of ANI equal
to 12.211 is obtained by the Noor iteration. As for the first parameters’ setting, we can
observe that the addition of the Picard step to the SP and Noor iterations improved
their speed of convergence.

In the last parameters setting, we use high values of the parameters. Like for the
other two parameter settings, for the polynomiographs in Fig. 6, we see that the slowest
speed of convergence is obtained by the Noor iteration. On the other side, the fastest
speed of convergence is again obtained by the Picard–SP iteration. In the case of
each of the polynomiographs, we can observe that the colors are darker than for the
two other parameter settings. This shows that for higher values of the parameters,
all the iterations need fewer iterations to find the roots. We can also observe this by
looking at the values of ANI in Table 2. We see that the lowest ANI value equal to
2.053 is obtained by the Picard–SP iteration for high values of the parameters. The
lowest values of ANI for the other iterations are also obtained for high values of the
parameters. The only exception is the Picard–S∗ iteration, for which the best result is
obtained for the lowest values of the parameters.

5 Conclusions

In this paper, we have investigated the convergence analysis of the newly proposed
Picard–SP iteration process and its efficient utilization for fixed point estimation of
generalized α-nonexpansive mappings. Efficacy is illustrated numerically as well as
theoretically. The results show the superiority of the proposed Picard–SP iteration
over the Noor, SP, P, D, Picard–S∗ and Picard–Noor iteration processes. Moreover, we
empirically compared the Picard–SP iteration with the Noor, SP, P, D, Picard–S∗ and
Picard–Noor iteration processes in the root-finding problem via Newton’s method. For
the comparison, we used polynomiography. Again, the results show a better speed of
convergence of the Picard–SP iteration.
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