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Abstract

In recent years many researchers have focused their attention on the use of dif-
ferent iteration process – known from fixed point theory – in the generation of
different kinds of patterns. In this paper, we propose modifications of the Saa-
datmandi and Bisheh-Niasar root finding method. In the first modification we
modify the formula of the method and in the second modification we use the S-
iteration with periodic parameters. Moreover, we numerically investigate some
properties of the proposed methods and modification using three measures, i.e.,
the generation time, mean number of iterations and convergence area index.
The obtained polynomiographs show that the proposed methods have a poten-
tial artistic applications, and the numerical results show that there is no obvious
dependency of the considered measures on the sequences of the parameters used
in the S-iteration.

Keywords: S-iteration, polynomiography, root finding

1. Introduction

Using the computer in many of industrial and economic activities, is unde-
niable. As nowadays, in order to promote variety of products, using of some
hardware, software and technical innovation in competition, is needed. In textile
and carpet industries, patterns generation can be one instance of applications
of computer. In carpet design and tapestry design, a designer have to be aware
of these techniques, in order to obtain an interesting pattern. Therefore, it is
highly motivated to develop new methods of obtaining an interesting patterns.
Polynomials along with the roots finding methods can be used for the generation
of these.
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Polynomial root finding is one of the oldest mathematical problems. Histor-
ical documents show that Sumerian (3000 B.C.) and Babylonians (2000 B.C.)
dealt with it. In 17th century, Newton proposed a numerical method for approx-
imation of roots of polynomials. Cayley, in 1879, investigated the behaviour of
Newton’s method for equation z3− 1 = 0 in the complex plane (which is known
as the Cayley’s problem). Finally in 1919, Cayley’s problem was solved by Julia.

In connection with polynomial roots finding, Kalantari introduced an inter-
esting subject the so-called ”Polynomiography”. Polynomiography is defined to
be ”the art and science of visualization in approximation of the zeros of complex
polynomials, via fractal and non-fractal images created using the mathematical
convergence properties of iteration functions” [1, 2]. An individual image cre-
ated with the mentioned methods and properties is called a ”polynomiograph”.

Kalantari used polynomiography not only for scientific aims, but also as an
inspiration for artworks [3], e.g., paintings, carpet design, tapestry, sculptures.
The artistic applications of polynomiography drawn attention of many scientists.
They proposed various modifications of the methods proposed by Kalantari.
The most popular modification relays on the use of various iteration processes
from fixed point theory. In [4] the authors have proposed the use of Mann
and Ishikawa iteration. Later, in [5] the S-iteration was used. Eleven different
iteration processes were studied in [6]. In [7] Rafiq et al., instead of studying
the explicit iteration processes as the previous researchers, started to study
the implicit iteration processes. They used Jungck-Mann and Jungck-Ishikawa
iterations. All the iteration processes use parameters, which are sequences. In
all the mentioned papers for simplicity the authors used constant sequences of
the parameters. The iteration processes were not only studied as the source
for new artistic patterns, but also in the computational aspect. In [8, 9] the
authors made a comparison of different iteration process in root finding using
two measures: the mean number of iterations, convergence area index.

In this paper, we propose modifications of the root finding method intro-
duced in [10]. In the first modification we modify the formula of this method
and the second modification relays on the use of the S-iteration. Moreover,
instead of using constant sequences in the S-iteration we propose the use of
sequences that are periodic functions. The proposed methods are studied in
two directions – artistic and computational.

This paper is organized as follows: In Sec. 2, we introduce the basics of
polynomiography. Next, in Sec. 3 we present root finding method introduced
in [10]. Moreover, we propose modification of the S-iteration process by intro-
ducing parameters defined with periodic functions. Some graphical examples
and numerical results are presented in Sec. 4. Finally, in Sec. 5 we give some
concluding remarks.

2. Polynomiography

As it was already mentioned in the introduction polynomiography is a method
of visualizing the approximation of zeroes of complex polynomials. Thus, the
main element in the polynomiography – except the polynomial – is a method for
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the approximation of zeroes, i.e., the root finding method. The literature is full
of various root finding methods. The oldest and the most well-known method
is the Newton’s root finding method. It was introduced in the 17th century
and since then many different methods were proposed, e.g., Halley method [11],
Traub-Ostrowski method [12], Harmonic Mean method [12], or even whole fam-
ilies of methods, e.g., Basic family [2], Euler-Schröder family [2], Jarratt family
[13].

To generate a polynomiograph we take area of interest in the complex plane
A ⊂ C and for each point z0 in this area we iterate the root finding method R
using a feedback iteration, i.e.,

zn+1 = R(zn). (1)

We proceed with the iteration process till the convergence test is satisfied or the
maximum number of iterations is reached. The standard convergence test has
the following form:

|zn+1 − zn| < ε, (2)

where ε > 0 is the accuracy of the computations. Finally, when we end the
iteration process we colour the starting point (z0) using some colouring function.
The two basic colouring functions are: colouring according to the iteration (we
assign the colour using the number of performed iterations and a colour map),
basins of attraction (each root of the polynomial gets its own distinct colour
and we assign the colour using the colour of the nearest root to the point at
which we have stopped iterating).

The method of generating polynomiograph described above is the standard
way introduced by Kalantari. In the literature exist various modifications of
this method. The two most commonly used modifications relay on the use of
different iteration processes and different convergence tests.

In the first modification we replace the feedback iteration process (1) (the
Picard iteration) with other iteration processes known from fixed point theory.
In the literature various iterations processes were used, e.g., Mann, Ishikawa, S,
Noor, Jungck-Mann, Jungck-Ishikawa. Lets recall some of the processes:

• Mann iteration [14]

zn+1 = (1− αn)zn + αnR(zn), n = 0, 1, 2, . . . , (3)

where αn ∈ (0, 1] for all n ∈ N.

• Ishikawa iteration [15]{
zn+1 = (1− αn)zn + αnR(un),

un = (1− βn)zn + βnR(zn), n = 0, 1, 2, . . . ,
(4)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.
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• S-iteration [16]{
zn+1 = (1− αn)R(zn) + αnR(un),

un = (1− βn)zn + βnR(zn), n = 0, 1, 2, . . . ,
(5)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.

• Noor iteration [17]
zn+1 = (1− αn)zn + αnR(un),

un = (1− βn)zn + βnR(vn),

vn = (1− γn)zn + γnR(zn), n = 0, 1, 2, . . . ,

(6)

where αn ∈ (0, 1] and βn, γn ∈ [0, 1] for all n ∈ N.

One can easily observe that the iterations for particular values of the parameters
can be reduced to other iterations, e.g., Ishikawa iteration with βn = 0 for n ∈ N
is a Mann iteration, and when βn = 0, αn = 1 for n ∈ N is the Picard iteration.
A review of 18 different iteration processes and their dependencies can be found
in [18].

In the second modification – presented in [19] – the standard convergence
test (2) is replaced by other convergence tests. The tests are based not only on
metrics, but also on functions that are not metrics. Using those new tests we are
able to introduce a very interesting details to polynomiographs. An exemplary
convergence tests that can be used are the following:

|0.01(zi+1 − zi)|+ |0.029|zi+1|2 − 0.03|zi|2| < ε, (7)∣∣∣∣ 0.05

|zn+1|2
− 0.05

|zn|2

∣∣∣∣ < ε, (8)

|0.04<(zi+1 − zi)| < ε ∨ |0.05=(zi+1 − zi)| < ε, (9)

where <(z), =(z) is the real and imaginary part of z, respectively.
The pseudocode of the algorithm for the generation of polynomiograph using

iteration processes and convergence tests is presented in Algorithm 1.

3. Root finding method and its modifications

In [10] Saadatmandi and Bisheh-Niasar introduced a new root finding method.
They used Taylor’s expansion

f(α) = f(xn)+(α−xn)
f ′(xn)

1!
+(α−xn)2

f ′′(xn)

2!
+. . .+(α−xn)k

f (k)(xn)

k!
+. . . ,

(10)
where α is a root, and the substitution of α− xn with

exp(b(α− xn))− 1

b
, (11)
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Algorithm 1: Polynomiograph generation

Input: p ∈ C[Z] – polynomial, A ⊂ C – area, K – maximum number of
iterations, Iq – iteration method, q ∈ CN – parameters of the
iteration Iq, R – root finding method, Tt – convergence test,
t ∈ RM – parameters of the convergence test Tt.

Output: Polynomiograph for the area A.

1 for z0 ∈ A do
2 n = 0
3 while n ≤ K do
4 zn+1 = Iq(R, p, zn)
5 if Tt(zn, zn+1) = true then
6 break

7 n = n+ 1

8 determine the colour for z0

where b = f ′′(xn)/f ′(xn) to obtain the following method:

zn+1 = zn +
f ′(zn)

f ′′(zn)
ln

(
1− f(zn)f ′′(zn)

f ′(zn)2

)
. (12)

This method has the third-order convergence [10].
Now, introducing

R(z) = z +
f ′(z)

f ′′(z)
ln

(
1− f(z)f ′′(z)

f ′(z)2

)
(13)

we can write (12) in the following short form:

zn+1 = R(zn). (14)

In [6] the authors used various iteration methods in the root finding methods.
In the rest of the paper we will be considering (13) with only one iteration
method, namely the S-iteration, i.e.,{

zn+1 = (1− αn)R(zn) + αnR(un),

un = (1− βn)zn + βnR(zn), n = 0, 1, 2, . . . ,
(15)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.
To obtain more interesting polynomiographs, from the artistic point of view,

we modify (13) to the following form:

S(z) =
f ′(z)

f ′′(z)
ln

(
1− f(z)f ′′(z)

f ′(z)2

)
(16)
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and use it with the S-iteration:{
zn+1 = (1− αn)S(zn) + αnS(un),

un = (1− βn)zn + βnS(zn), n = 0, 1, 2, . . . ,
(17)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N. This method usually does not
converge (using the standard convergence test) to the roots of a given polyno-
mial, but as we will see in the examples presented in Sec. 4 the patterns obtained
with this method are more interesting than the ones generated by (13).

In the previous papers on polynomiography [18, 6, 5] only constant param-
eters (αn, βn) in the S-iteration were used. In this paper we propose the use of
parameters that are defined with the use of periodic functions. For instance, as
the periodic functions one can take the trigonometric functions. This modifica-
tion will allow to change the dynamics of the root finding method in a significant
way. This change of the dynamics is other than when we use the constant values
of the parameters. Moreover, we extend the intervals of the possible values of
the parameters from [0, 1] to [−1, 1].

4. Examples

In this section, we present some polynomiographs obtained with the methods
introduced in Sec. 3. Moreover, we compare (13) and (16) using three measures:
generation time, mean number of iterations and convergence area index.

In all the examples the common parameters used to generate the poly-
nomiographs were the following: p(z) = z5− 1, K = 10, resolution of 301× 301
pixels. The examples are divided according to the functions that were used for
defining the parameters of the S-iteration. Moreover, in each example we use
two convergence tests, namely test (2) and (8) with ε = 0.001.

The three measures used in the comparison are defined as follows. The gen-
eration time is the time needed to compute all the points of the polynomiograph.
It is measured in seconds. The mean number of iterations (MNI) is computed –
from the polynomiograph obtained with the colouring according to the iteration
– as the mean value of the iterations in the polynomiograph. The convergence
area index (CAI) is given by the following formula:

CAI =
Nc

N
, (18)

where Nc is the number of points in the polynomiograph that have converged
and N is the number of all points in the polynomiograph. The value of CAI is
between 0 (no point has converged) and 1 (all points have converged).

The algorithm for the polynomiographs’ generation has been implemented
in Matlab and all polynomiographs have been generated on a computer with
the following specification: Intel i3-4130 (@3.4 GHz) processor, 4 GB RAM and
Windows 8 (64-bit).

In the first example we use the following sequences of parameters αn =
cos(an) and βn = sin(an), where a ∈ R is the parameter of the sequence in
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(a) a =
√
7/2 (b) a =

√
2 (c) a = 1.5

(d) a = 2 (e) a = 2.5 (f) a = 5

Figure 1: Polynomiographs generated using (13), the convergence test (2) and αn =
cos(an), βn = sin(an) in the S-iteration

the S-iteration. Changing the a parameter we change the periodicity of the
sequence. The polynomiographs generated in A = [−3, 3]2 using (13) and (16)
are presented in Fig. 1 and 2, respectively. To generate these polynomiographs
the standard convergence test (2) was used. Looking at the polynomiographs in
both figures we see that the change of the periodicity of the sequences αn, βn
has a great influence on the shape of the polynomiograph, especially in the case
of using (16). Moreover, the patterns obtained with (13) have a very regular
and smooth shape, whereas the patterns generated using (16) have irregular
shapes and possess much more details, so they are much more interesting from
the artistic point of view.

The numerical results obtained for the polynomiographs in Fig. 1 and 2 are
presented in Tab. 1. In the case of the method (13) we see that the generation
times are between 32 and 35 seconds, attaining the minimum at a = 1.5 and
the maximum at a =

√
2. The generation times for (16) are longer, ranging

from 55 to 59 seconds. This difference is caused by the fact that the MNI for
(16) has higher values than in the case of (13). The MNI is about 1.6-1.7 times
higher, so we need to make more computations. For the CAI measure we see
that in the case of (13) the change of the periodicity has a small effect on its
value, whereas for (16) the CAI measure changes in a significant way.

The polynomiographs obtained with the same methods and αn, βn in the
S-iteration, but with the convergence test (8) are presented in Fig. 3 and 4.
The use of other convergence test in both cases introduced new details into the
polynomiographs. For the method (13) the new details are visible in the regions
where the method has converged fast using the standard convergence test. The

7



(a) a =
√
7/2 (b) a =

√
2 (c) a = 1.5

(d) a = 2 (e) a = 2.5 (f) a = 5

Figure 2: Polynomiographs generated using (16), the convergence test (2) and αn =
cos(an), βn = sin(an) in the S-iteration

Table 1: Results obtained for the convergence test (2) and αn = cos(an), βn = sin(an) in the
S-iteration

(a) method (13)

a Time MNI CAI√
7/2 33.7657 4.6507 1√
2 35.1831 4.6971 1

1.5 32.0688 4.4909 1
2 33.9159 4.7258 0.9999
2.5 34.0460 4.8652 0.9999
5 33.1420 4.6792 1

(b) method (16)

a Time MNI CAI√
7/2 59.3970 7.741 0.9406√
2 58.2912 7.5479 0.9751

1.5 59.4442 7.6733 0.8827
2 55.3757 7.5744 0.8722
2.5 59.8557 7.9096 0.8949
5 55.7959 7.4452 0.9496

8



(a) a =
√
7/2 (b) a =

√
2 (c) a = 1.5

(d) a = 2 (e) a = 2.5 (f) a = 5

Figure 3: Polynomiographs generated using (13), the convergence test (8) and αn =
cos(an), βn = sin(an) in the S-iteration

obtained patterns look more interesting. In the case of (16) the new details are
not as visible as in the case of (13), but nevertheless they make the patterns
look more intriguing.

Tab. 2 gathers the results of numerical computations regarding the poly-
nomiographs from Fig. 3 and 4. The results show that the use of other conver-
gence test has only a small impact on the generation time. The value of the
MNI in both cases has decreased. For the (13) from about 0.5 to 0.6, whereas
from 0.2 to 0.4 for the (16). Moreover, we see that the change of the periodicity
for (13) does not affect the CAI, because for all the values of a the CAI is equal
1. Thus, for all points the method has converged to the roots. In the second
case (method (16)) we see that for all values of a the value of CAI is less than
1, so in the considered area there are some points that do not converge to the
roots using the second convergence test.

For the next examples let us consider the following functions:

f(x) =


−2(1 + x) if − 1 ≤ x ≤ −0.5,

2x if − 0.5 < x < 0.5,

2(1− x) if 0.5 ≤ x ≤ 1,

(19)

g(x) = −x, for x ∈ (−1, 1). (20)

Assume that f and g have the period T = 2. Now we define αn and βn based
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(a) a =
√
7/2 (b) a =

√
2 (c) a = 1.5

(d) a = 2 (e) a = 2.5 (f) a = 5

Figure 4: Polynomiographs generated using (16), the convergence test (8) and αn =
cos(an), βn = sin(an) in the S-iteration

Table 2: Results obtained for the convergence test (8) and αn = cos(an), βn = sin(an) in the
S-iteration

(a) method (13)

a Time MNI CAI√
7/2 32.7823 4.098 1√
2 32.3302 4.0938 1

1.5 32.3851 3.9910 1
2 37.9665 4.1817 1
2.5 39.9706 4.3376 1
5 34.8024 4.1561 1

(b) method (16)

a Time MNI CAI√
7/2 56.9791 7.4930 0.9726√
2 55.0062 7.3483 0.9808

1.5 54.3824 7.4701 0.9211
2 55.0616 7.3556 0.8732
2.5 63.5438 7.5176 0.8965
5 54.2124 7.1413 0.9674
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(a) a =
√
3/2 (b) a =

√
7/2 (c) a = 1.5

(d) a = 2 (e) a = 3 (f) a = 4

Figure 5: Polynomiographs generated using (13), the convergence test (2) and αn = f(a
√
n),

βn = g(a
√
n2 + 1) in the S-iteration

on f and g:

αn = f(a
√
n), (21)

βn = g(a
√
n2 + 1), (22)

where a ∈ R.
The polynomiographs generated in A = [−5, 5]2 using (13) and (16) are

presented in Fig. 5 and 6, respectively. To generate these polynomiographs the
standard convergence test (2) was used. The obtained polynomiographs show
that the change of the a parameter in the αn and βn changes the shape of the
polynomiographs in a significant way. Similar to the first example the shapes of
obtained patterns are smooth and regular in the case of using (13), whereas in
the case (16) the patterns are irregular and more intriguing. The finer details
that are visible in polynomiographs obtained with (16) are more interesting
in various artistic applications, e.g., as patterns on wallpapers or t-shirts, in
creating paintings, carpet design etc.

The numerical results obtained during the generation of polynomiographs
from Fig. 5 and 6 are presented in Tab. 3. From the results obtained with (13)
we see that the generation time vary between 37 and 50 seconds and there is no
obvious dependency of time on the parameter a. The times for (16) are longer
(57 to 65 seconds), and also in this case there is no obvious dependency. The
shortest time is obtained for a = 4 and a =

√
7/2 for (13) and (16), respectively.

The difference of values of the MNI measure for both methods is significant. The
MNI for (13) vary between 5.0877 (for a = 4) and 5.6567 (for a = 3), whereas
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(a) a =
√
3/2 (b) a =

√
7/2 (c) a = 1.5

(d) a = 2 (e) a = 3 (f) a = 4

Figure 6: Polynomiographs generated using (16), the convergence test (2) and αn = f(a
√
n),

βn = g(a
√
n2 + 1) in the S-iteration

for (16) between 7.5151 (for
√

7/2) and 8.5613 (for a =
√

3/2). Thus, method
(13) converges faster than (16). When we look at the CAI measure we see that
(13) obtains very high values of this measure, meaning that all or almost all
points have converged to the roots. In the case of (16) we see that for all the
considered values of a the CAI is less than 1, with the minimum equal to 0.6142
(for a =

√
3/2).

In the last example we present polynomiographs obtained with the same
parameters as in the previous example, but with the convergence test given by
(8). The polynomiographs for method (13) are presented in Fig. 7, whereas
for (16) in Fig. 8. Comparing the polynomiographs from Fig. 5 (convergence

Table 3: Results obtained for the convergence test (2) and αn = f(a
√
n), β = g(a

√
n2 + 1)

in the S-iteration

(a) method (13)

a Time MNI CAI√
3/2 40.6493 5.4401 0.9998√
7/2 40.4425 5.1911 1

1.5 43.1393 5.5042 0.9999
2 39.5907 5.3702 0.9999
3 50.3564 5.6567 1
4 37.9569 5.0877 1

(b) method (16)

a Time MNI CAI√
3/2 65.1625 8.5613 0.6142√
7/2 57.2023 7.5151 0.9997

1.5 61.6361 8.3002 0.9351
2 63.2092 8.0267 0.8002
3 61.0711 8.0567 0.9230
4 60.0939 7.7808 0.9862
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(a) a =
√
3/2 (b) a =

√
7/2 (c) a = 1.5

(d) a = 2 (e) a = 3 (f) a = 4

Figure 7: Polynomiographs generated using (13), the convergence test (8) and αn = f(a
√
n),

βn = g(a
√
n2 + 1) in the S-iteration

test (2)) and 7 (convergence test (8)) we see that the use of the non-standard
convergence test introduced interesting details into the polynomiograhs. Similar
effect can be observed in the case of the use of (16) (compare polynomiographs
from Fig. 6 and 8).

The numerical results obtained using the non-standard convergence test (8)
and sequences of the parameters given by (21) nad (22) are gathered in Tab. 4.
In both cases the times are shorter than in the corresponding cases for the
standard convergence test presented in the previous example. The times are
between 33 and 41 second for (13) and between 54 and 64 seconds for (16). In
neither case we do not see any obvious dependency of time on the value of a.
The lowest value of MNI for (13) is attained at a = 4. At the same time for
a = 4 the method obtained the highest value of CAI, namely 1. So, each point
in the considered area converged to a root. In the case of (16) the lowest value
of MNI (7.2482) was attained at a =

√
7/2. And also in this case for the same

value of a the method obtained the highest value of CAI, i.e., 0.9997. Thus, in
the considered area one can find points that have not converged. Moreover, the
lowest value of CAI for (16) is equal to 0.66, which shows a poor convergence
of this method for a =

√
3/2.

5. Conclusions

In this paper, we presented some modifications of the root finding method
presented in [10]. The first modification is modification of the formula. The
second modification relays on the use instead of the standard Picard iteration of
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(a) a =
√
3/2 (b) a =

√
7/2 (c) a = 1.5

(d) a = 2 (e) a = 3 (f) a = 4

Figure 8: Polynomiographs generated using (16), the convergence test (8) and αn = f(a
√
n),

βn = g(a
√
n2 + 1) in the S-iteration

Table 4: Results obtained for the convergence test (8) and αn = f(a
√
n), β = g(a

√
n2 + 1)

in the S-iteration

(a) method (13)

a Time MNI CAI√
3/2 34.0322 4.9294 0.9999√
7/2 34.3116 4.6960 1

1.5 36.4676 4.9439 0.9999
2 36.7840 4.8256 1
3 41.1271 5.1577 1
4 33.8420 4.5262 1

(b) method (16)

a Time MNI CAI√
3/2 64.6580 8.3400 0.6600√
7/2 54.6322 7.2482 0.9997

1.5 63.6953 8.0557 0.9444
2 60.2835 7.9083 0.8241
3 59.1052 7.6932 0.9541
4 56.9820 7.5390 0.9908
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the S-iteration with a periodic sequences of the parameters. Using the proposed
methods and the periodic sequences we obtained polynomiographs of artistic
value, especially in the case of the modified method. The numerical results show
that the periodicity of the sequences used in the S-iteration has a significant
effect on time, MNI and CAI. Using different periodicities we can obtain both
better and worse values of the measures. The conducted experiments show
that there is no obvious dependency of the measures on the periodicity of the
sequences.

In future work, we will attempt to introduce the periodic parameters into
other types of iteration process known in the literature. Moreover, we will
numerically investigate the dependencies between the three measures, that were
used in the paper, for the other iteration processes.

References

[1] B. Kalantari, Polynomiography and applications in art, education and sci-
ence, Computers & Graphics 28 (3) (2004) 417–430. doi:10.1016/j.cag.
2004.03.009.

[2] B. Kalantari, Polynomial Root-Finding and Polynomiography, World Sci-
entific, Singapore, 2009. doi:10.1142/9789812811837.

[3] B. Kalantari, Two and three-dimensional art inspired by polynomiography,
in: R. Sarhangi, R. Moody (Eds.), Renaissance Banff: Mathematics, Music,
Art, Culture, Bridges Conference, Southwestern College, Winfield, Kansas,
2005, pp. 321–328.

[4] W. Kotarski, K. Gdawiec, A. Lisowska, Polynomiography via Ishikawa and
Mann iterations, in: G. Bebis, R. Boyle, B. Parvin, D. Koracin, C. Fowlkes,
S. Wang, M.-H. Choi, S. Mantler, J. Schulze, D. Acevedo, K. Mueller,
M. Papka (Eds.), Advances in Visual Computing, Vol. 7431 of Lecture
Notes in Computer Science, Springer, Berlin Heidelberg, 2012, pp. 305–
313. doi:10.1007/978-3-642-33179-4\_30.

[5] S. Kang, H. Alsulami, A. Rafiq, A. Shahid, S-iteration scheme and poly-
nomiography, Journal of Nonlinear Science and Applications 8 (5) (2015)
617–627.

[6] K. Gdawiec, W. Kotarski, A. Lisowska, Polynomiography based on the non-
standard Newton-like root finding methods, Abstract and Applied Analysis
2015 (2015) Article ID 797594, 19 pages. doi:10.1155/2015/797594.

[7] A. Rafiq, M. Tanveer, W. Nazeer, S. Kang, Polynomiography via modified
Jungck, modified Jungck Mann and modified Jungck Ishikawa iteration
scheme, PanAmerican Mathematical Journal 24 (4) (2014) 66–95.

[8] G. Ardelean, L. Balog, A qualitative study of Agarwal et al. iteration proce-
dure for fixed points approximation, Creative Mathematics and Informatics
25 (2) (2016) 135–139.

15

http://dx.doi.org/10.1016/j.cag.2004.03.009
http://dx.doi.org/10.1016/j.cag.2004.03.009
http://dx.doi.org/10.1142/9789812811837
http://dx.doi.org/10.1007/978-3-642-33179-4_30
http://dx.doi.org/10.1155/2015/797594


[9] G. Ardelean, O. Cosma, L. Balog, A comparison of some fixed point iter-
ation procedures by using the basins of attraction, Carpathian Journal of
Mathematics 32 (3) (2016) 277–284.

[10] M. Bisheh-Niasar, A. Saadatmandi, Some novel Newton-type method for
solving nonlinear equations, Boletim da Sociedade Paranaense de Matem-
atica(in press).

[11] G. Alefeld, On the convergence of Halley’s method, The American Mathe-
matical Monthly 88 (7) (1981) 530–536. doi:10.2307/2321760.

[12] G. Ardelean, A comparison between iterative methods by using the basins
of attraction, Applied Mathematics and Computation 218 (1) (2011) 88–95.
doi:10.1016/j.amc.2011.05.055.

[13] C. Chun, B. Neta, S. Kim, On Jarratt’s family of optimal fourth-order
iterative methods and their dynamics, Fractals 22 (4) (2014) 1450013. doi:
10.1142/S0218348X14500133.

[14] W. Mann, Mean value methods in iteration, Proceedings of the Amer-
ican Mathematical Society 4 (3) (1953) 506–510. doi:10.1090/

S0002-9939-1953-0054846-3.

[15] S. Ishikawa, Fixed points by a new iteration method, Proceedings of the
American Mathematical Society 44 (1) (1974) 147–150. doi:10.1090/

S0002-9939-1974-0336469-5.

[16] R. Agarwal, D. O’Regan, D. Sahu, Iterative construction of fixed points
of nearly asymptotically nonexpansive mappings, Journal of Nonlinear and
Convex Analysis 8 (1) (2007) 61–79.

[17] M. Noor, New approximation schemes for general variational inequalities,
Journal of Mathematical Analysis and Applications 251 (1) (2000) 217–229.
doi:10.1006/jmaa.2000.7042.

[18] K. Gdawiec, W. Kotarski, Polynomiography for the polynomial infinity
norm via Kalantaris formula and nonstandard iterations, Applied Math-
ematics and Computation 307 (2017) 17–30. doi:10.1016/j.amc.2017.

02.038.

[19] K. Gdawiec, Polynomiography and various convergence tests, in: V. Skala
(Ed.), WSCG 2013 Communication Papers Proceedings, Vaclav Skala –
Union Agency, Plzen, Czech Republic, 2013, pp. 15–20.

16

http://dx.doi.org/10.2307/2321760
http://dx.doi.org/10.1016/j.amc.2011.05.055
http://dx.doi.org/10.1142/S0218348X14500133
http://dx.doi.org/10.1142/S0218348X14500133
http://dx.doi.org/10.1090/S0002-9939-1953-0054846-3
http://dx.doi.org/10.1090/S0002-9939-1953-0054846-3
http://dx.doi.org/10.1090/S0002-9939-1974-0336469-5
http://dx.doi.org/10.1090/S0002-9939-1974-0336469-5
http://dx.doi.org/10.1006/jmaa.2000.7042
http://dx.doi.org/10.1016/j.amc.2017.02.038
http://dx.doi.org/10.1016/j.amc.2017.02.038

	Introduction
	Polynomiography
	Root finding method and its modifications
	Examples
	Conclusions

