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Abstract. In recent years, researchers have studied the use of different
iteration processes from fixed point theory for the generation of complex
fractals. Examples are the Mann, the Ishikawa, the Noor, the Jungck-
Mann and the Jungck-Ishikawa iterations. In this paper, we present a
generalisation of complex fractals, namely Mandelbrot, Julia and mul-
ticorn sets, using the Jungck-CR implicit iteration scheme. This type of
iteration does not reduce to any of the other iterations previously used
in the study of complex fractals; thus, this generalisation gives rise to
new fractal forms. We prove a new escape criterion for a polynomial
of the following form zm − az + c, where a, c ∈ C, and present some
graphical examples of the obtained complex fractals.
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1. Introduction

A very common method of generating fractal patterns in the complex plane
is the repeated iteration of a complex function f : C → C in the following
way:

zn+1 = f(zn), (1)

where f depends on some constant c ∈ C and z0 ∈ C is the point from a
considered area of the complex plane [38]. The two most famous examples of
such fractals are the Mandelbrot and Julia sets.

The Mandelbrot and Julia sets are some of the best known illustrations
of a highly complicated chaotic system generated by a very simple mathemat-
ical process. They were introduced by Benoit Mandelbrot in the late 1970s
[27], but Julia sets were studied much earlier, namely in the early twentieth
century by French mathematicians Pierre Fatou [10] and Gaston Julia [17].
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While working at IBM, Mandelbrot studied their works and plotted the Julia
sets for z2 + c. Building on them, he plotted the Mandelbrot set. He was sur-
prised by his results. Since then, many mathematicians have studied different
properties of the Mandelbrot and Julia sets and proposed accordingly various
generalisations. The first and most obvious generalisation was the use of the
zp + c function instead of the quadratic one used by Mandelbrot [8, 26]. Fur-
ther, additional types of functions were studied: rational [32], transcendental
[9], elliptic [24], anti-polynomials [6] etc. Another development, building on
the study of the Mandelbrot and Julia sets, was the extension from complex
numbers to other algebras, e.g. quaternions [7], octonions [15], bicomplex
numbers [23] etc.

In recent years, some researchers have focused on a different kind of
generalisation. They used results that can be found in fixed point theory.
In this theory, we can find methods of locating fixed points that replace
the feedback process (1) with other types of iteration processes. The use of
different iteration processes began in 2004 in the works of Rani and Kumar
[36, 37]. They used the Mann iteration and proved new escape criteria for
the generation of the Mandelbrot and Julia sets using this type of iteration.
Further studies on the use of different iteration processes were conducted,
focusing on two in particular. The first type, like the Mann iteration used by
Rani and Kumar, was an explicit process. Examples of processes of this type
that were used to generate the Mandelbrot and Julia sets are the following:
Ishikawa [5, 14], Noor [2], S [22] and Abbas [25]. The second type of iteration
process is an implicit one. In the literature, we can find the use of the Jungck-
Mann [28], Jungck-Ishikawa [28] and Jungck-Noor [21] iterations, which are
examples of such processes. Moreover, studies on the noise-perturbed versions
of the Mandelbrot and Julia sets generated by the different iteration processes
were conducted [1, 29, 35].

The Mandelbrot and Julia sets are not only interesting from a mathe-
matical point of view. They have applications in other fields also, e.g. physics
[3], biology [4] and robotics [45]. One of the most natural applications of the
Mandelbrot and Julia sets – because of their beauty – was their use in com-
puter graphics. The sets were used as a source of aesthetic patterns [44, 46],
for creating realistic phenomena and landscapes [11] or for image manipula-
tion [40]. In [42], Sun et al. have used Julia sets as the base for creating a
dictionary with domain blocks used in fractal image compression. Moreover,
in [41], Sun et al. have proposed an image encryption algorithm in which
Julia set parameters are used to generate a random sequence as the initial
keys for the algorithm.

Another example of complex fractals generated using (1) are fractals
obtained with the help of complex polynomial root finding methods, known as
polynomiography [19]. In this type of fractals we visualise – in different ways
– the process of root finding of a given polynomial. The literature describes
various root finding methods, which contribute to the great number of fractal
patterns obtained through them. Moreover, in the case of polynomiography a
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study on the use of various iteration processes was conducted [12, 13, 20, 34],
which allowed to extend the variety of the obtained fractal patterns.

In this paper, we focus only on the Mandelbrot and Julia sets. We define
the Jungck-CR orbit and show how to use it to generalise the feedback process
used to generate Mandelbrot and Julia sets. Moreover, we prove the escape
criterion for a complex polynomial of the form zm − az + c, where a, c ∈ C.

The paper is organised as follows. In Section 2, we give definitions for the
Julia, Mandelbrot and multicorn sets together with the escape time algorithm
for their generation. Moreover, we define some of the iterations that were
previously used in the study of complex fractals. In Section 3, we define the
Jungck-CR iteration and we discuss how to use this type of iteration for the
generation of complex fractals. Moreover, we derive the escape criteria for
the m-th degree polynomial. In Section 4, we present some examples of Julia,
Mandelbrot and multicorn sets in Jungck-CR orbit obtained with the escape
time algorithm. Finally, in Section 5, we present our concluding remarks.

2. Preliminaries

In this section, we provide the preliminary definitions that form the basis of
our work.

Definition 1 (Julia Set). Let Qc : C → C be a polynomial function that
depends on c ∈ C. The filled Julia set KQc of the function Qc is defined as

KQc = {z ∈ C : |Qnc (z)| 6→ ∞ as n→∞}, (2)

where Qnc (z) is the n-th iterate of the function Qc. The Julia set JQc of the
function Qc is defined as the boundary of KQc

, i.e. JQc
= ∂KQc

.

Definition 2 (Mandelbrot set). The Mandelbrot setM consists of all param-
eters c to which the filled Julia set of the polynomial function Qc : C→ C is
connected, i.e.

M = {c ∈ C : KQc is connected}. (3)

The Mandelbrot set can be equally defined in the following way [43]

M = {c ∈ C : |Qnc (z∗)| 6→ ∞ as n→∞}, (4)

where z∗ is any critical point of Qc, i.e. Q′c(z
∗) = 0.

Definition 3 (Multicorn). Let Ac(z) = zm + c, where c ∈ C. The multicorn
M∗ for Ac is defined as the collection of all c ∈ C to which the orbit of 0
under the action of Ac is bounded, i.e.

M∗ = {c ∈ C : |Anc (0)| 6→ ∞ as n→∞}. (5)

The multicorn for m = 2 is called the tricorn.

The most widely used algorithm to generate images of Julia, Mandelbrot
and multicorn sets is the escape time algorithm. The colour of each point in
the algorithm is determined based on the number of iterations necessary
to evaluate whether the orbit sequence tends to infinity or not. In order
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to establish whether the orbit escapes or not we use the escape criterion.
For instance, for the classical Mandelbrot and Julia sets, i.e. sets defined by
Qc(z) = z2 +c, the escape criterion is the following: if there exists k ≥ 0 such
that

|Qkc (z)| > max{|c|, 2}, (6)

then Qnc (z)→∞ as n→∞.
We call the right side of (6) the escape threshold (or bailout value).

This threshold can be different for different functions Qc and plays a very
important role in the generation of Mandelbrot and Julia sets.

The escape time algorithms for the generation of Mandelbrot and Julia
sets are presented in Algorithm 1 and 2 respectively. For the generation of
multicorns, we can use the same algorithm as for the Mandelbrot set, but
with Ac instead of Qc and the critical point set to 0.

Algorithm 1 Mandelbrot set generation

Require: Qc : C→ C – polynomial function,A ⊂ C – area,K – the maximum
number of iterations, colourmap[0..C − 1] – colourmap with C colours.

Ensure: Mandelbrot set for the area A.

1: for c ∈ A do
2: R = calculate escape threshold
3: n = 0
4: z0 = critical point of Qc
5: while n ≤ K do
6: zn+1 = Qc(zn)
7: if |zn+1| > R then
8: break
9: end if

10: n = n+ 1
11: end while
12: i = b(C − 1) nK c
13: colour c with colourmap[i]
14: end for

In fixed point theory, there are many theorems and methods that allow
one to find fixed points in a given mapping. One of the main foci of the theory
is the iterative approximation of fixed points. For this, we use different kinds
of iteration processes. Let us recall some of them.

Definition 4 (Picard iteration [33]). Let T : X → X be a mapping on a
metric space (X, d), where d is a metric and let x0 ∈ X be a starting point.
The Picard iteration is defined as follows:

xn+1 = T (xn), n = 0, 1, 2, . . . . (7)

The sequence {xn}n∈N is called the Picard orbit of x0.
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Algorithm 2 Julia set generation

Require: Qc : C → C – polynomial function, c ∈ C – parameter, A ⊂ C
– area, K – the maximum number of iterations, colourmap[0..C − 1] –
colourmap with C colours.

Ensure: Julia set for the area A.

1: R = calculate escape threshold
2: for z0 ∈ A do
3: n = 0
4: while n ≤ K do
5: zn+1 = Qc(zn)
6: if |zn+1| > R then
7: break
8: end if
9: n = n+ 1

10: end while
11: i = b(C − 1) nK c
12: colour z0 with colourmap[i]
13: end for

Definition 5 (Jungck iteration [18]). Let S, T : X → X be mappings on a
metric space (X, d), where d is a metric and let x0 ∈ X be a starting point.
The Jungck iteration is defined as follows:

S(xn+1) = T (xn), n = 0, 1, 2, . . . . (8)

The sequence {xn}n∈N is called the Jungck orbit of x0.

Definition 6 (Jungck-Mann iteration [39]). Let S, T : X → X be mappings
on a metric space (X, d), where d is a metric and let x0 ∈ X be a starting
point. The Jungck-Mann iteration is defined as follows:

S(xn+1) = (1− α)S(xn) + αT (xn), n = 0, 1, 2, . . . , (9)

where α ∈ (0, 1]. The sequence {xn}n∈N is called the Jungck-Mann orbit of
x0.

Let us notice that the Jungck-Mann iteration reduces to the Jungck
iteration if α = 1, and to the Picard iteration if S(x) = x and α = 1.

Definition 7 (Jungck-Ishikawa iteration [31]). Let S, T : X → X be mappings
on a metric space (X, d), where d is a metric and let x0 ∈ X be a starting
point. The Jungck-Ishikawa iteration is defined as follows:{

S(xn+1) = (1− α)S(xn) + αT (yn),

S(yn) = (1− β)S(xn) + βT (xn), n = 0, 1, 2, . . . ,
(10)

where α ∈ (0, 1] and β ∈ [0, 1]. The sequence {xn}n∈N is called the Jungck-
Ishikawa orbit of x0.
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Let us notice that the Jungck-Ishikawa iteration reduces to the Jungck-
Mann iteration if β = 0.

Definition 8 (Jungck-Noor iteration [30]). Let S, T : X → X be mappings
on a metric space (X, d), where d is a metric and let x0 ∈ X be a starting
point. The Jungck-Noor iteration is defined as follows:

S(xn+1) = (1− α)S(xn) + αT (yn),

S(yn) = (1− β)S(xn) + βT (un),

S(un) = (1− γ)S(xn) + γT (xn), n = 0, 1, 2, . . . ,

(11)

where α ∈ (0, 1] and β, γ ∈ [0, 1]. The sequence {xn}n∈N is called the Jungck-
Noor orbit of x0.

Let us notice that the Jungck-Noor iteration reduces to the Jungck-
Ishikawa iteration if γ = 0. This is the most general iteration of the above.

3. Mandelbrot and Julia Sets in Jungck-CR Orbit

Let us notice that the Picard iteration is the iteration used in the generation of
complex fractals. In the literature, we can find studies that have replaced the
Picard iteration with other iterations, e.g. with the ones presented in Section 2
[21, 28]. In this section, we show how to use one of the implicit iterations,
namely the Jungck-CR iteration, for the generation of Julia, Mandelbrot and
multicorn sets.

Let us start with the definition of a Jungck-CR iteration and its orbit.

Definition 9 (Jungck-CR iteration [16]). Let S, T : X → X be mappings on
a metric space (X, d), where d is a metric and let x0 ∈ X be a starting point.
The Jungck-CR iteration is defined as follows:

S(xn+1) = (1− α)S(yn) + αT (yn),

S(yn) = (1− β)T (xn) + βT (un),

S(un) = (1− γ)S(xn) + γT (xn), n = 0, 1, 2, . . . ,

(12)

where α ∈ (0, 1] and β, γ ∈ [0, 1]. The sequence {xn}n∈N is called the Jungck-
CR orbit of x0.

Let us notice that the Jungck-CR iteration does not reduce to any of the
discussed iterations: Picard, Jungck-Mann, Jungck-Ishikawa, Jungck-Noor.
Thus, using this iteration creates a completely new orbit and, by consequence,
new fractal sets.

In the Picard orbit we use only one mapping and in Jungck-CR we have
two mappings. Thus, if we want to replace the Picard orbit with the Jungck-
CR orbit, we need to take into account the different number of mappings
in the iterations. We handle this in the following way. Let Qc : C → C be
a polynomial function. We deconstruct Qc into two mappings S, T in such
a way that Qc = T − S and S is injective. In the case of multicorns, we
deconstruct Q∗c(z) = Qc(z) in the following way: Q∗c = T − S, where T = Ac
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and S is injective. Of course, this type of deconstruction restricts the choice
of the polynomial functions that can be used. With the deconstruction, we
also need to derive a new escape criterion for the mappings and (12).

In the following subsection we prove the escape criterion for a class of
polynomials.

3.1. Escape criterion for a complex polynomial of the form zm − az + c

Let Qc(z) = zm − az + c, where m ∈ {2, 3, . . .} and a, c ∈ C. We deconstruct
Qc in the following way: T (z) = zm + c and S(z) = az.

Theorem 1. Assume that |z| ≥ |c| >
(

2(1+|a|)
α

) 1
m−1

, |z| ≥ |c| >
(

2(1+|a|)
β

) 1
m−1

,

|z| ≥ |c| >
(

2(1+|a|)
γ

) 1
m−1

, where α, β, γ ∈ (0, 1] and define {zn}n∈N as fol-

lows: 
S(zn+1) = (1− α)S(yn) + αT (yn),

S(yn) = (1− β)T (zn) + βT (un),

S(un) = (1− γ)S(zn) + γT (zn), n = 0, 1, 2, . . . ,

(13)

where z0 = z. Then, |zn| → ∞ as n→∞.

Proof. Because T (z) = zm + c, S(z) = az and z0 = z, we have

|S(u0)| = |(1− γ)S(z) + γT (z)| = |(1− γ)az + γ(zm + c)|
≥ γ|zm + c| − (1− γ)|az| ≥ γ|zm| − γ|c| − |az|+ γ|az|
≥ γ|zm| − |z| − |a||z| (because |z| ≥ |c| and γ ≤ 1).

The above expression gives us

|au0| ≥ γ|zm| − (1 + |a|)|z| = |z|(γ|z|m−1 − (1 + |a|)).

Thus

|u0| ≥ |z|
(
γ|z|m−1

1 + |a|
− 1

)
.

In the second step of the iteration we have

|S(y0)| = |(1− β)T (z) + βT (u0)| ≥ |(1− β)(zm + c) + β(um0 + c)|
≥ |(1− β)zm + βum0 | − |c| ≥ β|um0 | − β|zm|+ |zm| − |c|.

Since |z| >
(

2(1+|a|)
γ

) 1
m−1

, which implies |z|m
(
γ|z|m−1

1+|a| − 1
)m

> |z|m, hence

|u0|m > |z|m
(
γ|z|2
1+|a| − 1

)m
≥ |z|m ≥ γ|z|m. We get

|ay0| ≥ (βγ − β + 1)|zm| − |c|
≥ βγ|zm| − |z| (because |z| ≥ |c| and 1− β ≥ 0)

≥ βγ|zm| − (1 + |a|)|z| (because 1 + |a| ≥ 1).

Thus

|y0| ≥ |z|
(
βγ|z|m−1

1 + |a|
− 1

)
.
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Since |z| ≥ |c| >
(

2(1+|a|)
β

) 1
m−1

and |z| ≥ |c| >
(

2(1+|a|)
γ

) 1
m−1

, so |z| ≥(
2(1+|a|)
βγ

) 1
m−1

, thus |z|m−1 ≤ |z|m−1
(
βγ|z|m−1

1+|a| − 1
)m−1

. Hence

|y0|m−1 ≥ |z|m−1
(
βγ|z|m−1

1 + |a|
− 1

)m−1
≥ |z|m−1 ≥ βγ|z|m−1.

In the third step of the iteration we have

|S(z1)| = |(1− α)S(y0) + αT (y0)| = |(1− α)ay0 + α(ym0 + c)|
= |(1− α)ay0 + αym0 + αc| ≥ α|ym0 | − (1− α)|ay0| − α|c|
= α|ym0 | − |a||y0|+ α|a||y0| − α|c|
≥ α|ym0 | − |a||y0| − |y0| (because |y0| ≥ |z| ≥ |c|)
= |y0|(α|y0|m−1 − (1 + |a|)).

Moreover, |S(z1)| = az1. Thus

|z1| ≥ |y0|
(
α|y0|m−1

1 + |a|
− 1

)
.

Because |y0| ≥ |z| and |z| ≥
(

2(1+|a|)
α

) 1
m−1

, thus α|y0|m−1

1+|a| ≥
α|z|m−1

1+|a| >

2. Therefore, |y0|
(
α|y0|m−1

1+|a| − 1
)
≥ |z|

(
αβγ|z|m−1

1+|a| − 1
)

. By consequence

|z1| ≥ |z|
(
αβγ|z|m−1

1 + |a|
− 1

)
.

Since |z| >
(

2(1+|a|)
α

) 1
m−1

, |z| >
(

2(1+|a|)
β

) 1
m−1

and |z| >
(

2(1+|a|)
γ

) 1
m−1

,

so |z| >
(

2(1+|a|)
αβγ

) 1
m−1

. By consequence, αβγ|z|m−1

1+|a| − 1 > 1. Therefore, there

exists λ > 0 such that αβγ|z|m−1

1+|a| − 1 > 1 + λ. Consequently, |z1| > (1 + λ)|z|.
In particular, |z1| > |z|. Thus, we may apply the same argument repeatedly
to find |zn| > (1 + λ)n|z|. This way, the orbit of z tends to infinity, which
completes the proof. �

Corollary 1. Suppose that

|c| >
(

2(1 + |a|)
α

) 1
m−1

, |c| >
(

2(1 + |a|)
β

) 1
m−1

and |c| >
(

2(1 + |a|)
γ

) 1
m−1

,

(14)
then the Jungck-CR orbit escapes to infinity.

Corollary 2 (Escape Criterion). Let α, β, γ ∈ (0, 1] and

|z| > max

{
|c|,
(

2(1 + |a|)
α

) 1
m−1

,

(
2(1 + |a|)

β

) 1
m−1

,

(
2(1 + |a|)

γ

) 1
m−1

}
,

(15)
then there exists λ > 0, such that |zn| > (1+λ)n|z| and |zn| → ∞ as n→∞.
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Corollary 3. Suppose that

|zk| > max

{
|c|,
(

2(1 + |a|)
α

) 1
m−1

,

(
2(1 + |a|)

β

) 1
m−1

,

(
2(1 + |a|)

γ

) 1
m−1

}
(16)

for some k ≥ 0. Then, there exists λ > 0, such that |zk+n| > (1 +λ)n|zk| and
|zn| → ∞ as n→∞.

4. Examples

In this section, we present some examples of the Julia, Mandelbrot and multi-
corn sets images obtained using the Jungck-CR orbit and the escape criterion
derived in Section 3. The images were generated using the escape time algo-
rithm that was implemented in Mathematica. The times required for gener-
ating the images were between 5 and 7 seconds on a computer with an Intel
Core i5 (2.5 GHz) processor and 3 GB of RAM.

4.1. Examples of Julia sets in Jungck-CR orbit

The first example presents Julia sets for Qc(z) = z3+(3/2)z+c and c = 1.75i
generated using Jungck and Jungck-CR iterations. The obtained images are
presented in Figure 1 and the parameters used to generate them were the
following:

(a) A = [−1.7, 1.7]2, K = 50, Jungck iteration.
(b) A = [−1.5, 1.5] × [−2.5, 2.5], K = 50, Jungck-CR iteration with α =

β = γ = 0.9.
(c) A = [−2.5, 2.5]2, K = 50, Jungck-CR iteration with α = 0.9, β = 0.5,

γ = 0.1.
(d) A = [−3.5, 3.5] × [−6, 6], K = 50, Jungck-CR iteration with α = β =

γ = 0.1.

From the obtained images we can observe that the Julia sets gener-
ated using the Jungck-CR iteration differ in a significant way from the one
obtained with the Jungck iteration. The shape of the set in Figure 1(b) is
somewhat similar to the one from Figure 1(a), but the shapes of the sets from
Figure 1(c) and (d) are completely different. The change of the parameters
in the Jungck-CR iteration allows us to obtain very different shapes of Ju-
lia sets for the same polynomial used to generate them. Moreover, when we
look at the area that the sets occupy, we see that the sets obtained with the
Jungck-CR iteration occupy a larger area than the set generated using the
Jungck iteration.

In the second example we present various Julia sets generated using
the Jungck-CR iteration. In order to generate the images of Julia sets from
Figure 2 the following parameters were used:

(a) Qc(z) = z2 + 2z+ c, c = 17.28 + 5.5i, A = [−28, 14]× [−28, 28], K = 50,
Jungck-CR iteration with α = β = γ = 0.1.
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(a) (b)

(c) (d)

Figure 1. Julia set for Qc(z) = z3+(3/2)z+c and c = 1.75i
in (a) Jungck and (b)-(d) Jungck-CR orbit

(b) Qc(z) = z3 + (3/2)z+ c, c = 0.72, A = [−2.3, 2.3]2, K = 50, Jungck-CR
iteration with α = β = γ = 0.5.

(c) Qc(z) = z4 + 3z + c, c = 3.9 + 7i, A = [−2.5, 2.5]2, K = 50, Jungck-CR
iteration with α = β = γ = 0.5.

From the images, we see that using different combinations of the pa-
rameters, e.g. polynomial, parameters in the Jungck-CR iteration etc., we
are able to obtain very diverse fractal patterns that have potential artistic
applications.

4.2. Examples of Mandelbrot sets in the Jungck-CR orbit

We begin with an example presenting the use of Jungck and Jungck-CR
iterations. In the example, we use Qc(z) = z4 + 3z + c. The parameters used
to generate the images from Figure 3 were the following:

(a) A = [−7, 6]× [−6, 6], K = 20, Jungck iteration.
(b) A = [−8, 8]2, K = 20, Jungck-CR iteration with α = 0.5, β = 0.9,

γ = 0.9.
(c) A = [−13, 10] × [−11, 11], K = 20, Jungck-CR iteration with α = 0.9,

β = 0.9, γ = 0.1.
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(a) (b)

(c)

Figure 2. Julia sets for various parameters in Jungck-CR orbit

(d) A = [−63, 60] × [−61, 61], K = 20, Jungck-CR iteration with α = β =
γ = 0.1.

Looking at the images in Figure 3 we can observe that the shape of
the Mandelbrot set is different in the Jungck-CR orbit and the Jungck orbit.
The number of bulbs in all the images is the same – three – but their shape
changes with the change of the parameters in the Jungck-CR iteration. We
can also observe that for different values of the α, β and γ parameters the
three-fold symmetry of the sets remains unchanged. Moreover, the area that
the set occupies changes for different values of the parameters used in the
Jungck-CR iteration.

Figure 4 presents examples of various Mandelbrot sets generated using
the Jungck-CR iteration and the following parameters:

(a) Qc(z) = z2 + 2z + c, A = [−35.5, 12] × [−12, 12], K = 20, Jungck-CR
iteration with α = 0.6, β = 0.7, γ = 0.2.

(b) Qc(z) = z3+(3/2)z+c, A = [−3.5, 3.5]×[−5.5, 5.5], K = 20, Jungck-CR
iteration with α = 0.1, β = 0.5, γ = 0.7.

(c) Qc(z) = z4.5 + 3z + c, A = [−12, 12]2, K = 20, Jungck-CR iteration
with α = β = γ = 0.5.

Similar to the case of the Julia sets, we can observe from the presented
images that using the Jungck-CR iteration we are able to obtain various
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(a) (b)

(c) (d)

Figure 3. Mandelbrot set for Qc(z) = z4 + 3z + c in (a)
Jungck and (b)-(d) Jungck-CR orbit

shapes of the corresponding Mandelbrot sets. Moreover, the change of the
α, β and γ parameters in the Jungck-CR iteration has great impact on the
shape of the resulting set.

4.3. Examples of multicorns in the Jungck-CR orbit

Similar to the case of the Julia and Mandelbrot sets, we begin with an example
of multicorns generated with the Jungck and Jungck-CR iterations. In the
example, we present multicorns for Q∗c(z) = z4 +3z+c. The obtained images
of multicorns are presented in Figure 5. For their generation, the following
parameters were used:

(a) A = [−7, 6]× [−6, 6], K = 20, Jungck iteration.
(b) A = [−8, 8]2, K = 20, Jungck-CR iteration with α = β = γ = 0.9.
(c) A = [−15, 10] × [−11, 11], K = 20, Jungck-CR iteration with α = β =

γ = 0.5.
(d) A = [−100, 60]× [−61, 61], K = 20, Jungck-CR iteration with α = β =

γ = 0.1.

From the obtained images in Figure 5, we can observe that the overall
shapes of the sets obtained in the Jungck-CR orbit are completely differ-
ent than the shape obtained in the Jungck orbit. The shape changes in a
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(a) (b)

(c)

Figure 4. Mandelbrot sets for various parameters in the
Jungck-CR orbit

significant way with the change of the α, β and γ parameters of the Jungck-
CR iteration. Moreover, the set in the Jungck orbit has a 5-fold symmetry,
whereas the sets in the Jungck-CR orbit lose this type of symmetry. They
only exhibit a mirror symmetry with the real axis as the line of symmetry.
When we look at the area occupied by the sets, we observe that also in this
case depending on the values of the parameters used in the Jungck-CR iter-
ation the sets occupy different areas – for some values they occupy a smaller
area and for others a larger.

In the second example, we present various multicorn sets generated using
the Jungck-CR iteration. In order to generate the images of the sets from
Figure 6 the following parameters were used:

(a) Q∗c(z) = z2 + 2z + c, A = [−16.5, 8.5] × [−8, 8], K = 20, Jungck-CR
iteration with α = 0.6, β = 0.7, γ = 0.5.

(b) Q∗c(z) = z3+(3/2)z+c, A = [−2.5, 2.5]×[−3.5, 3.5], K = 20, Jungck-CR
iteration with α = 0.9, β = 0.7, γ = 0.7.

When we look at the images, we can observe that the shapes of the
obtained sets are less interesting in comparison to the Mandelbrot and Julia
sets. Moreover, we see that both sets have axial symmetries. The image in
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(a) (b)

(c) (d)

Figure 5. Multicorn set for Q∗c(z) = z4 + 3z + c in (a)
Jungck and (b)-(d) Jungck-CR orbit

(a) (b)

Figure 6. Multicorn sets for various parameters in the
Jungck-CR orbit

Figure 6(a) has one axis of symmetry, namely the real axis, whereas the image
in Figure 6(b) has two axes of symmetry – the real and imaginary axis.
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5. Conclusions

In this paper, the Jungck-CR iteration has been introduced in the study of
complex fractals (Julia sets, Mandelbrot sets, multicorns). The new escape
criterion for the Jungck-CR iteration has been established for the m-th degree
complex polynomial functions.

The Jungck-CR does not reduce to the Picard, Jungck-Mann, Jungck-
Ishikawa, Jungck-Noor, nor any other iteration studied in the literature on
the generation of complex fractals. Thus, the results of this paper open up
a new class of complex fractals. Moreover, the obtained complex fractals
could further extend the capabilities of the algorithms that use Mandelbrot
and Julia sets, e.g. they can expand the domain dictionary used in fractal
image compression [42] or broaden the space for the initial keys used in image
encryption [41].

In future work, we will attempt to introduce the Jungck-CR and other
implicit iteration processes into other types of complex fractals, e.g. fractals
obtained through polynomiography.
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